Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (3): 543-555.doi: 10.3864/j.issn.0578-1752.2026.03.006

• PLANT PROTECTION • Previous Articles     Next Articles

The Phylogeographic History of Pepper Mild Mottle Virus

NING RuoYun1(), YIN YuQi1(), SHEN JianGuo2(), ZHANG ShuLing3, GONG MeiFang1, GAO FangLuan1()   

  1. 1 Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002
    2 Technology Center of Fuzhou Customs District, Fuzhou 350001
    3 Department of Horticulture and Garden, Fujian Vocational College of Agriculture, Fuzhou 350007
  • Received:2025-10-07 Accepted:2025-10-30 Online:2026-02-01 Published:2026-01-31
  • Contact: SHEN JianGuo, GAO FangLuan

Abstract:

【Objective】Pepper mild mottle virus (PMMoV) belongs to the species Tobamovirus capsicai in the genus Tobamovirus (family Virgaviridae), has emerged as an important pathogen, significantly impacting pepper yield and quality. The objectives of this study are to investigate its phylogeographic history and evolutionary dynamics, and to lay the foundation for accurate monitoring and scientific prevention and control. 【Method】A specific primer pair flanking the PMMoV coat protein (CP) gene was designed. The CP gene sequences of 28 randomly selected PMMoV isolates from Fujian Province were subsequently amplified and cloned. In addition to the newly obtained sequences, all publicly available CP sequences from GenBank with known collection timestamps and geographical origins were assembled into a final dataset of 255 sequences. After confirming a sufficient temporal signal via a date-randomized test (DRT), a structured coalescent-based Bayesian phylodynamic framework (MultiTypeTree) was employed to reconstruct the evolutionary history and spatial dissemination of the virus. 【Result】A target fragment with the expected size was obtained from all 28 PMMoV-positive samples selected in this study. Their CP sequences share >98% nucleotide identity with known PMMoV isolates. The DRT showed no overlap in the 95% confidence intervals of substitution rates between the real and randomized datasets, confirming a reliable temporal signal for Bayesian molecular dating. Phylogenetic analysis estimated a mean substitution rate of 9.24×10-4 substitutions/site/year (95% CI: 6.20×10-4-1.01×10-3 substitutions/site/year) for the PMMoV CP, which is comparable to rates observed in animal RNA viruses, indicating its rapid evolutionary dynamics. The time to the most recent common ancestor (tMRCA) was dated to 1941 (95% CI: 1921-1957). The root of the maximum clade credibility (MCC) tree was placed in Europe, identifying this region as the most probable origin of contemporary global PMMoV isolates. Temporal migration analysis revealed multiple dispersal routes from Europe to other regions, underscoring its role as a central hub in the virus’s global dissemination. In addition to cross-regional transmission, frequent local spread of PMMoV was observed within regions. Bayesian skyline plot (BSP) analysis further revealed distinct historical population dynamics: the South American population underwent a significant expansion before stabilizing, whereas those in most other regions remained relatively stable over the long term. 【Conclusion】Europe served as the most likely source and a critical dissemination hub for the global spread of PMMoV. This study provides a foundation for understanding the molecular epidemiology of PMMoV and informs the development of future disease management strategies.

Key words: pepper mild mottle virus (PMMoV), Bayesian phylogeography, temporal signal, temporal migration pattern, structured coalescent, MultiTypeTree

Table 1

Information of PMMoV isolates sequenced in this study"

分离物
Isolate
采样地点
Location
采样日期
Sampling date
登录号
Accession number
分离物
Isolate
采样地点
Location
采样日期
Sampling date
登录号
Accession number
QZST001 泉州Quanzhou 2024-03-04 PQ807648 NPDH011 南平Nanping 2023 PQ807668
QZST002 泉州Quanzhou 2024-03-04 PQ807649 NPDH012 南平Nanping 2023 PQ807669
QZST003 泉州Quanzhou 2024-03-04 PQ807650 NPDH013 南平Nanping 2023 PQ807670
QZST004 泉州Quanzhou 2024-03-04 PQ807651 NPDH015 南平Nanping 2023 PQ807671
QZST005 泉州Quanzhou 2024-03-04 PQ807652 SMJL002 三明Sanming 2023-06 PQ807673
QZST008 泉州Quanzhou 2024-03-04 PQ807653 SMJL004 三明Sanming 2023-06 PQ807675
QZST011 泉州Quanzhou 2024-03-04 PQ807654 SMJL007 三明Sanming 2023-06 PQ807678
QZST012 泉州Quanzhou 2024-03-04 PQ807655 SMJL008 三明Sanming 2023-06 PQ807679
QZST015 泉州Quanzhou 2024-03-04 PQ807657 SMJL015 三明Sanming 2023-06 PQ807681
QZST036 泉州Quanzhou 2024-03-04 PQ807660 QZHL007 泉州Quanzhou 2022-11-28 PQ807686
NPDH003 南平Nanping 2023 PQ807662 FZSP002 福州Fuzhou 2023-03-02 PQ807688
NPDH004 南平Nanping 2023 PQ807663 FZSP005 福州Fuzhou 2023-03-02 PQ807690
NPDH009 南平Nanping 2023 PQ807666 FZSP006 福州Fuzhou 2023-03-02 PQ807691
NPDH010 南平Nanping 2023 PQ807667 FZSP011 福州Fuzhou 2023-03-02 PQ807692

Fig. 1

Diagram showing the temporal distribution of PMMoV isolates across different regions"

Fig. 2

RT-PCR amplification of CP from PMMoV"

Fig. 3

Assessment of temporal signal of PMMoV dataset"

Table 2

Marginal likelihoods of different combinations of molecular clock model and tree prior model"

分子钟模型Molecular clock model 树先验模型Tree prior model 对数边际似然值Marginal likelihoods
严格分子钟Strict clock 恒定大小Constant -3753.326
严格分子钟Strict clock 指数增长Exponential growth -3736.539
严格分子钟Strict clock 贝叶斯天际线Bayesian skyline -3634.739
严格分子钟Strict clock 多类型树MultiTypeTree -3489.759
不相关对数正态分布宽松分子钟Uncorrelated lognormal relaxed 恒定大小Constant -4261.053
不相关对数正态分布宽松分子钟Uncorrelated lognormal relaxed 指数增长Exponential growth -4335.131
不相关对数正态分布宽松分子钟Uncorrelated lognormal relaxed 贝叶斯天际线Bayesian skyline -4242.967
不相关对数正态分布宽松分子钟Uncorrelated lognormal relaxed 多类型树MultiTypeTree -3827.067

Table 3

Estimates of the substitution rate and time to the most common ancestor"

参数Parameter 数值Value
序列长度Sequence length (nt) 474
日期范围Date range (year) 1980-2024
样本大小Sample size 255
最近共祖时间tMRCA (year) 1941 (1921-1957)
替代速率
Substitution rate (subs/site/year)
9.24×10-4 (6.20×10-4-1.01×10-3)

Fig. 4

The maximum clade credibility tree inferred from the CP sequences of PMMoV The tree topology is shown with branch lengths scaled to time. Only the posterior probabilities >0.90 are shown on the nodes. Branch colors represent the inferred location states. The inset panel displays the root state posterior probabilities for each region. The labels “Europe+India” and “Europe+China+North America” indicate uncertainty in the inferred geographic locations"

Fig. 5

Region-randomized test for the inferred origin of PMMoV The blue solid line indicates the posterior probability of the root state inferred from the real dataset. The orange and green dashed lines represent the maximum and minimum posterior probabilities of the root state, respectively, inferred from the region-randomized datasets"

Fig. 6

PMMoV migration dynamics across different regions over time The y-axis represents the number of migration events, and the x-axis represents the time scale"

Fig. 7

Demographic history of PMMoV populations The y-axis represents the effective population size (Ne) and the x-axis is measured in calendar years. The black line shows the median estimate of the population size, and the shading region shows the 95% credibility interval"

[1]
KUMARI N, SHARMA V, PATEL P, SHARMA P. Pepper mild mottle virus: A formidable foe of capsicum production—a review. Frontiers in Virology, 2023, 3: 1208853.

doi: 10.3389/fviro.2023.1208853
[2]
刘勇, 李凡, 李月月, 张松柏, 高希武, 谢艳, 燕飞, 张安盛, 戴良英, 程兆榜, 等. 侵染我国主要蔬菜作物的病毒种类、分布与发生趋势. 中国农业科学, 2019, 52(2): 239-261. doi: 10.3864/j.issn.0578-1752.2019.02.005.
LIU Y, LI F, LI Y Y, ZHANG S B, GAO X W, XIE Y, YAN F, ZHANG A S, DAI L Y, CHENG Z B, et al. Identification, distribution and occurrence of viruses in the main vegetables of China. Scientia Agricultura Sinica, 2019, 52(2): 239-261. doi: 10.3864/j.issn.0578-1752.2019.02.005. (in Chinese)
[3]
OCHAR K, KO H C, WOO H J, HAHN B S, HUR O. Pepper mild mottle virus: An infectious pathogen in pepper production and a potential indicator of domestic water quality. Viruses, 2023, 15(2): 282.

doi: 10.3390/v15020282
[4]
IKEGASHIRA Y, OHKI T, ICHIKI U T, HIGASHI T, HAGIWARA K, OMURA T, HONDA Y, TSUDA S. An Immunological system for the detection of pepper mild mottle virus in soil from green pepper fields. Plant Disease, 2004, 88(6): 650-656.

doi: 10.1094/PDIS.2004.88.6.650 pmid: 30812587
[5]
ADAMS M J, ADKINS S, BRAGARD C, GILMER D, LI D, MACFARLANE S A, WONG S M, MELCHER U, RATTI C, RYU K H, CONSORTIUM I R. ICTV virus taxonomy profile: Virgaviridae. Journal of General Virology, 2017, 98(8): 1999-2000.

doi: 10.1099/jgv.0.000884 pmid: 28786782
[6]
ALONSO E, GARCÍA-LUQUE I, DE LA CRUZ A, WICKE B, AVILA-RINCÓN M J, SERRA M T, CASTRESANA C, DÍAZ-RUÍZ J R. Nucleotide sequence of the genomic RNA of pepper mild mottle virus, a resistance-breaking tobamovirus in pepper. Journal of General Virology, 1991, 72(12): 2875-2884.

doi: 10.1099/0022-1317-72-12-2875
[7]
HAN K, ZHENG H, YAN D, ZHOU H, JIA Z, ZHAI Y, WU J, LU Y, WU G, RAO S, CHEN J, PENG J, QI R, YAN F. Pepper mild mottle virus coat protein interacts with pepper chloroplast outer envelope membrane protein OMP24 to inhibit antiviral immunity in plants. Horticulture Research, 2023, 10(5): uhad046.
[8]
李晓冬, 吴元华. 辣椒轻斑驳病毒研究进展. 生态学杂志, 2016, 35(10): 2831-2837.
LI X D, WU Y H. Research progress on pepper mild mottle virus. Chinese Journal of Ecology, 2016, 35(10): 2831-2837. (in Chinese)
[9]
FEATHERSTONE L, ZHANG J, VAUGHAN T, DUCHENE S. Epidemiological inference from pathogen genomes: A review of phylodynamic models and applications. Virus Evolution, 2022, 8(1): veac045.
[10]
KAWAKUBO S, GAO F, LI S, TAN Z, HUANG Y K, ADKAR- PURUSHOTHAMA C R, GURIKAR C, MANEECHOAT P, CHIEMSOMBAT P, AYE S S, et al. Genomic analysis of the brassica pathogen turnip mosaic potyvirus reveals its spread along the former trade routes of the Silk Road. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(12): e2021221118.
[11]
GAO F, KAWAKUBO S, HO S Y W, OHSHIMA K. The evolutionary history and global spatio-temporal dynamics of potato virus Y. Virus Evolution, 2020, 6(2): veaa056.
[12]
GUAN X, YANG C, FU J, DU Z, HO S Y W, GAO F. Rapid evolutionary dynamics of pepper mild mottle virus. Virus Research, 2018, 256: 96-99.

doi: S0168-1702(18)30356-3 pmid: 30096412
[13]
龚梅芳. 甜椒脉斑驳病毒福建群体的遗传结构及其分子进化机制[D]. 福州: 福建农林大学, 2024: 21-23.
GONG M F. Population genetic structure and molecular evolutionary mechanism of pepper veinal mottle virus in Fujian Province[D]. Fuzhou: Fujian Agriculrtue and Forestry University, 2024: 21-23. (in Chinese)
[14]
ZHANG D, GAO F, JAKOVLIC I, ZOU H, ZHANG J, LI W X, WANG G T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 2020, 20(1): 348-355.

doi: 10.1111/1755-0998.13096 pmid: 31599058
[15]
KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 2013, 30(4): 772-780.

doi: 10.1093/molbev/mst010 pmid: 23329690
[16]
MARTIN D P, VARSANI A, ROUMAGNAC P, BOTHA G, MASLAMONEY S, SCHWAB T, KELZ Z, KUMAR V, MURRELL B. RDP5: A computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evolution, 2020, 7(1): veaa087.
[17]
MURRAY G G R, WANG F, HARRISON E M, PATERSON G K, MATHER A E, HARRIS S R, HOLMES M A, RAMBAUT A, WELCH J J. The effect of genetic structure on molecular dating and tests for temporal signal. Methods in Ecology and Evolution, 2016, 7(1): 80-89.

pmid: 27110344
[18]
邹林峰, 涂丽琴, 沈建国, 杜振国, 蔡伟, 季英华, 高芳銮. 番茄褪绿病毒的进化动态与适应性进化特征. 中国农业科学, 2020, 53(23): 4791-4801. doi: 10.3864/j.issn.0578-1752.2020.23.006.
ZOU L F, TU L Q, SHEN J G, DU Z G, CAI W, JI Y H, GAO F L. The evolutionary dynamics and adaptive evolution of tomato chlorosis virus. Scientia Agricultura Sinica, 2020, 53(23): 4791-4801. doi: 10.3864/j.issn.0578-1752.2020.23.006. (in Chinese)
[19]
BOUCKAERT R, VAUGHAN T G, BARIDO-SOTTANI J, DUCHÊNE S, FOURMENT M, GAVRYUSHKINA A, HELED J, JONES G, KÜHNERT D, DE MAIO N, et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 2019, 15(4): e1006650.

doi: 10.1371/journal.pcbi.1006650
[20]
KALYAANAMOORTHY S, MINH B Q, WONG T K F, VON HAESELER A, JERMIIN L S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 2017, 14(6): 587-589.

doi: 10.1038/nmeth.4285 pmid: 28481363
[21]
BAELE G, LEMEY P, BEDFORD T, RAMBAUT A, SUCHARD M A, ALEKSEYENKO A V. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Molecular Biology and Evolution, 2012, 29(9): 2157-2167.

doi: 10.1093/molbev/mss084 pmid: 22403239
[22]
KASS R E, RAFTERY A E. Bayes factors. Journal of the American Statistical Association, 1995, 90(430): 773-795.

doi: 10.1080/01621459.1995.10476572
[23]
DUAN G, ZHAN F, DU Z, HO S Y W, GAO F. Europe was a hub for the global spread of potato virus S in the 19th century. Virology, 2018, 525: 200-204.

doi: S0042-6822(18)30302-7 pmid: 30296680
[24]
YIN Y, SHEN J, DU Z, HO S Y W, GAO F. VirPhyKit: An integrated toolkit for viral phylogeographic analysis. Ecology and Evolution, 2025, 15(12): e72796.

doi: 10.1002/ece3.v15.12
[25]
BRYNILDSRUD O B, PEPPERELL C S, SUFFYS P, GRANDJEAN L, MONTESERIN J, DEBECH N, BOHLIN J, ALFSNES K, PETTERSSON J O H, KIRKELEITE I, et al. Global expansion of Mycobacterium tuberculosis lineage 4 shaped by colonial migration and local adaptation. Science Advances, 2018, 4(10): eaat5869.
[26]
DRUMMOND A J, RAMBAUT A, SHAPIRO B, PYBUS O G. Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 2005, 22(5): 1185-1192.

doi: 10.1093/molbev/msi103 pmid: 15703244
[27]
DUFFY S, SHACKELTON L A, HOLMES E C. Rates of evolutionary change in viruses: Patterns and determinants. Nature Reviews Genetics, 2008, 9(4): 267-276.

doi: 10.1038/nrg2323 pmid: 18319742
[28]
MCKINNEY H H. Two strains of tobacco-mosaic virus, one of which is seed-borne in an etch-immune pungent pepper. Plant Disease Reporter, 1952, 36(5): 184-187.
[29]
WETTER C, CONTI M, ALTSCHUH D, TABILLION R, REGENMORTEL M H. Pepper mild mottle virus, a tobamovirus infecting pepper cultivars in Sicily. Phytopathology, 1984, 74(4): 405-410.

doi: 10.1094/Phyto-74-405
[30]
KRAFT K H, BROWN C H, NABHAN G P, LUEDELING E, LUNA RUIZ J, COPPENS D’EECKENBRUGGE G, HIJMANS R J, GEPTS P. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(17): 6165-6170.
[31]
FANG Z, WEN H, ZHANG J, ZHU J, SU X, JIANG S, FENG P. Bayesian phylogeographic analyses suggest Europe as the epicenter of global potato mop-top virus spread. Journal of Plant Pathology, doi: 10.1007/s42161-025-02021-x.
[32]
LEMEY P, RAMBAUT A, DRUMMOND A J, SUCHARD M A. Bayesian phylogeography finds its roots. PLoS Computational Biology, 2009, 5(9): e1000520.

doi: 10.1371/journal.pcbi.1000520
[33]
BAELE G, DELLICOUR S, SUCHARD M A, LEMEY P, VRANCKEN B. Recent advances in computational phylodynamics. Current Opinion in Virology, 2018, 31: 24-32.

doi: S1879-6257(18)30066-X pmid: 30248578
[34]
MÜLLER N F, RASMUSSEN D A, STADLER T. The structured coalescent and its approximations. Molecular Biology and Evolution, 2017, 34(11): 2970-2981.

doi: 10.1093/molbev/msx186 pmid: 28666382
[35]
GAO F, LIU X, DU Z, HOU H, WANG X, WANG F, YANG J. Bayesian phylodynamic analysis reveals the dispersal patterns of tobacco mosaic virus in China. Virology, 2019, 528: 110-117.

doi: S0042-6822(18)30365-9 pmid: 30594790
[1] HE Yong, FAN XiaoZhu, CHEN XinYue, DUAN ShuJing, HU TingTing, XIE RuXue, WANG YuQing, CHEN Jing. Screening and Verification of Pepper Host Factors Interacting with the 126 kDa Protein of Pepper Mild Mottle Virus by Yeast Two-Hybrid System [J]. Scientia Agricultura Sinica, 2024, 57(15): 2986-2996.
[2] ZOU LinFeng,TU LiQin,SHEN JianGuo,DU ZhenGuo,CAI Wei,JI YingHua,GAO FangLuan. The Evolutionary Dynamics and Adaptive Evolution of Tomato Chlorosis Virus [J]. Scientia Agricultura Sinica, 2020, 53(23): 4791-4801.
[3] WANG ShaoLi, TAN WeiPing, YANG YuanYuan, DAI HuiJie, SUN XiaoHui, QIAO Ning, ZHU XiaoPing. Molecular Detection and Identification of Main Viruses on Pepper in Shandong Province [J]. Scientia Agricultura Sinica, 2017, 50(14): 2728-2738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!