Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (8): 1627-1637.doi: 10.3864/j.issn.0578-1752.2025.08.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Purification of Deoxynivalenol-3-Glucoside by Using Macroporous Adsorption Resin Combined with High-Speed Counter-Current Chromatography

CHEN LongYun1,2(), HU JunQiang2, HE Can2, SHI JianRong2, XU JianHong1,2, WANG Gang1,2()   

  1. 1 School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu
    2 Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014
  • Received:2024-08-24 Accepted:2025-01-21 Online:2025-04-16 Published:2025-04-21
  • Contact: WANG Gang

Abstract:

【Objective】 Deoxynivalenol-3-glucoside (DON-3G) is the most commonly found masked mycotoxin in cereals, however, the high cost of substrates hinders further studies on it. This study aimed to develop an efficient and affordable method for the large-scale purification of DON-3G from the enzymatic transformation product. 【Method】 Static adsorption experiments were utilized to screen various types of adsorption and ion-exchange resins, and a single-factor experimental design was employed to determine the optimal adsorption and desorption conditions. The adsorption thermodynamic model was established to fit the adsorption behavior. The pure material of DON-3G was then prepared using high-speed counter-current chromatography (HSCCC), and the biphasic systems were screened. The UV and NMR spectroscopy were used to confirm the product's structure, and high-performance liquid chromatography (HPLC) was used to assess its purity.【Result】With a maximal adsorption capacity of 269.23 μg·g-1 resin, the XAD-4 resin was determined to be the most effective macroporous resin for adsorbing DON-3G from the reaction system. The 40% methanol solution was used as the desorption solvent, because it could elute DON-3G within 5 bed volume. DON-3G and unreacted DON were separated using a biphasic system with n-butanol/trifluoroacetic acid/water (1:0.01:1) at a flow rate of 1 mL·min-1, a rotation speed of 1 000 r/min, and a column temperature of 35 ℃ under the bidirectional elution mode. With optimal conditions, the HSCCC process produced DON-3G with a purity of 97.46% and the recovery rate was 79.7%. Unreacted DON could be recovered by reverse elution.【Conclusion】Over 100 mg of DON-3G might be separated and purified using this approach in a single run, paving the way for the subsequent research targeting DON-3G.

Key words: deoxynivalenol-3-glucoside, masked mycotoxin, isolation and purification, macroporous adsorption resin, high-speed counter-current chromatography

Fig. 1

Enzymatic transformation of DON-3G from DON"

Table 1

Resins screened in this study and their physicochemical properties"

树脂名称
Resin name
树脂类型
Resin type
平均孔径
Mean pore size (nm)
比表面积
Surface area (m2·g-1)
孔隙容量
Pore volume (mL·g-1)
基质
Matrix
XAD-2 非极性大孔吸附树脂
Nonpolar
9 300 0.65 苯乙烯-二乙烯基苯高聚物
Styrene-divinylbenzene
XAD-4 非极性大孔吸附树脂
Nonpolar
10 750 0.98 苯乙烯-二乙烯基苯高聚物
Styrene-divinylbenzene
XAD-7HP 弱极性大孔吸附树脂
Weakly polar
30-40 380 0.50 聚丙烯酸酯
Acrylic ester
XAD-1180 非极性大孔吸附树脂
Nonpolar
20 800 1.82 苯乙烯-二乙烯基苯高聚物
Styrene-divinylbenzene
XAD-1180N 非极性大孔吸附树脂
Nonpolar
30-40 450 1.40 苯乙烯-二乙烯基苯高聚物
Styrene-divinylbenzene
FPA91-OH 强碱性阴离子交换树脂
Strong basic anion exchange
30 NR 0.80 聚丙烯酸酯
Acrylic ester
IRA67 弱碱性阴离子交换树脂
Weakly basic anion exchange
NR NR 1.60 聚丙烯酸酯
Acrylic ester

Fig. 2

Optimization of adsorption conditions for resins on DON-3G A: Adsorption capacity of seven resins for DON-3G; B: Effect of pH on the adsorption capacity for DON-3G; C: Effect of environmental temperature on the adsorption capacity for DON-3G; D: Adsorption isotherm of XAD-4 resin for DON-3G"

Table 2

Langmuir and Freundlich adsorption isotherm parameters for DON-3G on XAD-4 resin at 25 ℃ in the static experiment"

Langmuir吸附模型 Langmuir adsorption isotherm Freundlich吸附模型 Freundlich adsorption isotherm
线性方程Linear equation Ce/Qe=0.0036Ce+0.081 线性方程Linear equation ln(Qe)=0.321ln(Ce)+3.821
Qm 277.78 KF 45.65
KL 0.044 1/n 0.321
R2 0.9941 R2 0.9754

Fig. 3

Optimization of elution conditions for DON-3G A: Elution rate of DON-3G from XAD-4 resin with different methanol solution; B: Dynamic desorption of DON-3G with 40% methanol solution"

Table 3

The Partition coefficients (Kd) of DON-3G in different solvent systems"

溶剂组成 Solvent system 比例 Ratio(v/v) DON Kd DON-3G Kd
1 乙酸乙酯:水:正己烷:甲醇 Ethyl acetate:H2O:n-hexane:methanol 8:8:2:2 0.62 0.004
2 乙酸乙酯:水 Ethyl acetate:H2O 1:1 0.882 0.009
3 正己烷:正丁醇:甲醇:水 n-Hexane:n-butanol:methanol:H2O 2:4:1:4 0.86 0.16
4 甲基叔丁基醚:乙腈:三氟乙酸:水 MTBE:acetonitrile:TFA:H2O 2:2:0.003:3 0.71 0.06
5 正丁醇:TFA:水 n-Butanol:TFA:H2O 1:0.005:1 1.13 0.28
6 正丁醇:TFA:水 n-Butanol:TFA:H2O 1:0.01:1 1.27 0.47
7 正丁醇:TFA:水 n-Butanol:TFA:H2O 1:0.015:1 1.23 0.48
8 正丁醇:TFA:水 n-Butanol:TFA:H2O 1:0.02:1 1.20 0.44

Fig. 4

Chromatogram of DON-3G and DON during the HSCCC isolation (Recorded at a wavelength of 220 nm)"

Fig. 5

Identification and purity assay of the isolated DON-3G A: HPLC chromatogram of the isolated DON-3G; B: UV absorption spectrum of the isolated DON-3G; C: 1H-NMR spectrum of the isolated DON-3G"

[1]
ABUDABOS A M, AL-ATIYAT R M, KHAN R U. A survey of mycotoxin contamination and chemical composition of distiller’s dried grains with solubles (DDGS) imported from the USA into Saudi Arabia. Environmental Science and Pollution Research, 2017, 24(18): 15401-15405.
[2]
ESKOLA M, KOS G, ELLIOTT C T, HAJŠLOVÁ J, MAYAR S, KRSKA R. Worldwide contamination of food-crops with mycotoxins:validity of the widely cited ‘FAO estimate’ of 25%. Critical Reviews in Food Science and Nutrition, 2020, 60(16): 2773-2789.
[3]
BERTHILLER F, CREWS C, DALL’ASTA C, DE SAEGER S, HAESAERT G, KARLOVSKY P, OSWALD I P, SEEFELDER W, SPEIJERS G, STROKA J. Masked mycotoxins: A review. Molecular Nutrition & Food Research, 2013, 57(1): 165-186.
[4]
DALL’ASTA C, BERTHILLER F. Masked mycotoxins in food: Formation, occurrence and toxicological relevance. Cambridge: Royal Society of Chemistry, 2015.
[5]
DONG F, WANG S, YU M, SUN Y, XU J, SHI J. Natural occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in various wheat cultivars grown in Jiangsu province, China. World Mycotoxin Journal, 10(3): 285-294.
[6]
SCHWARTZ-ZIMMERMANN H E, HAMETNER C, NAGL V, SLAVIK V, MOLL W D, BERTHILLER F. Deoxynivalenol (DON) sulfonates as major DON metabolites in rats: From identification to biomarker method development, validation and application. Analytical and Bioanalytical Chemistry, 2014, 406(30): 7911-7924.
[7]
BRYŁA M, STĘPNIEWSKA S, MODRZEWSKA M, WAŚKIEWICZ A, PODOLSKA G, KSIENIEWICZ-WOŹNIAK E, YOSHINARI T, STĘPIEŃ Ł, URBANIAK M, ROSZKO M, GWIAZDOWSKI R, KANABUS J, PIERZGALSKI A. Dynamics of deoxynivalenol and nivalenol glucosylation in wheat cultivars infected with Fusarium culmorum in field Conditions-A 3 year study (2018-2020). Journal of Agricultural and Food Chemistry, 2022, 70(14): 4291-4302.
[8]
KOVALSKY PARIS M P, SCHWEIGER W, HAMETNER C, STÜCKLER R, MUEHLBAUER G J, VARGA E, KRSKA R, BERTHILLER F, ADAM G. Zearalenone-16-O-glucoside: A new masked mycotoxin. Journal of Agricultural and Food Chemistry, 2014, 62(5): 1181-1189.

doi: 10.1021/jf405627d pmid: 24386883
[9]
BORZEKOWSKI A, DREWITZ T, KELLER J, PFEIFER D, KUNTE H J, KOCH M, ROHN S, MAUL R. Biosynthesis and characterization of Zearalenone-14-sulfate, Zearalenone-14-glucoside and Zearalenone- 16-glucoside using common fungal strains. Toxins, 2018, 10(3): 104.
[10]
PAN Y Y, LIU C D, YANG J G, TANG Y Q. Conversion of Zearalenone to β-Zearalenol and Zearalenone-14, 16-diglucoside by Candida parapsilosis ATCC 7330. Food Control, 2022, 131: 108429.
[11]
GAB-ALLAH M A, TAHOUN I F, YAMANI R N, REND E A, SHEHATA A B. Natural occurrence of deoxynivalenol, nivalenol and deoxynivalenol-3-glucoside in cereal-derived products from Egypt. Food Control, 2022, 137: 108974.
[12]
NIE D X, ZHU X T, LIU M H, CHENG M, FAN K, ZHAO Z H, HUANG Q W, ZHANG X L, HAN Z. Molecularly imprinted polymer-based electrochemical sensor for rapid detection of masked deoxynivalenol with Mn-doped CeO2 nanozyme as signal amplifier. Journal of Hazardous Materials, 2024, 477: 135366.
[13]
BERTHILLER F, WERNER U, SULYOK M, KRSKA R, HAUSER M T, SCHUHMACHER R. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin Zearalenone in the model plant Arabidopsis thaliana. Food Additives and Contaminants, 2006, 23(11): 1194-1200.
[14]
TROMBETE F, BARROS A, VIEIRA M, SALDANHA T, VENÂNCIO A, FRAGA M. Simultaneous determination of deoxynivalenol, deoxynivalenol-3-glucoside and nivalenol in wheat grains by HPLC-PDA with immunoaffinity column cleanup. Food Analytical Methods, 2016, 9(9): 2579-2586.
[15]
ZHANG Z Q, CAI Y L, FAN K, HUANG Q W, ZHAO X Y, CAO H J, ZHAO Z H, TANGNI E K, HAN Z. Development of a reliable UHPLC-MS/MS method for simultaneous determination of Zearalenone and Zearalenone-14-glucoside in various feed products. Frontiers in Chemistry, 2022, 10: 955266.
[16]
DE COLLI L, ELLIOTT C, FINNAN J, GRANT J, ARENDT E K, MCCORMICK S P, DANAHER M. Determination of 42 mycotoxins in oats using a mechanically assisted QuEChERS sample preparation and UHPLC-MS/MS detection. Journal of Chromatography B, 2020, 1150: 122187.
[17]
CASU A, CAMARDO LEGGIERI M, TOSCANO P, BATTILANI P. Changing climate, shifting mycotoxins: A comprehensive review of climate change impact on mycotoxin contamination. Comprehensive Reviews in Food Science and Food Safety, 2024, 23(2): e13323.
[18]
DONG F, QIU J B, XU J H, YU M Z, WANG S F, SUN Y, ZHANG G F, SHI J R. Effect of environmental factors on Fusarium population and associated trichothecenes in wheat grain grown in Jiangsu province, China. International Journal of Food Microbiology, 2016, 230: 58-63.
[19]
NAKAGAWA H, OHMICHI K, SAKAMOTO S, SAGO Y, KUSHIRO M, NAGASHIMA H, YOSHIDA M, NAKAJIMA T. Detection of a new Fusarium masked mycotoxin in wheat grain by high-resolution LC-Orbitrap™ MS. Food Additives & Contaminants: Part A, 2011, 28(10): 1447-1456.
[20]
KOVALSKY P, KOS G, NÄHRER K, SCHWAB C, JENKINS T, SCHATZMAYR G, SULYOK M, KRSKA R. Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize: An extensive survey. Toxins, 2016, 8(12): 363.
[21]
SUZUKI T, IWAHASHI Y. Low toxicity of deoxynivalenol-3- glucoside in microbial cells. Toxins, 2015, 7(1): 187-200.
[22]
TITTLEMIER S A, BRUNKHORST J, CRAMER B, DEROSA M C, LATTANZIO V M T, MALONE R, MARAGOS C, STRANSKA M, SUMARAH M W. Developments in mycotoxin analysis: An update for 2019-2020. World Mycotoxin Journal, 2021, 14(1): 3-26.
[23]
MICHLMAYR H, MALACHOVÁ A, VARGA E, KLEINOVÁ J, LEMMENS M, NEWMISTER S, RAYMENT I, BERTHILLER F, ADAM G. Biochemical characterization of a recombinant UDP- glucosyltransferase from rice and enzymatic production of deoxynivalenol-3-O-β-D-glucoside. Toxins, 2015, 7(7): 2685-2700.
[24]
王刚, 胡俊强, 史建荣, 徐剑宏. 利用大孔吸附树脂与高速逆流色谱联用技术大量制备脱氧雪腐镰刀菌烯醇的方法. 江苏农业科学, 2018, 46(23): 207-211.
WANG G, HU J Q, SHI J R, XU J H. Preparative purification of deoxynivalenol by combined use of macroporous resin and high-speed countercurrent chromatography. Jiangsu Agricultural Sciences, 2018, 46(23): 207-211. (in Chinese)
[25]
GUO X, WANG J L. Comparison of linearization methods for modeling the Langmuir adsorption isotherm. Journal of Molecular Liquids, 2019, 296: 111850.
[26]
ITO Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. Journal of Chromatography A, 2005, 1065(2): 145-168.

pmid: 15782961
[27]
HABLER K, FRANK O, RYCHLIK M. Chemical synthesis of deoxynivalenol-3-β-d-[13C6]-glucoside and application in stable isotope dilution assays. Molecules, 2016, 21(7): 838.
[28]
王丹丹, 刘芫汐, 左甜甜, 昝珂, 金红宇. 大孔吸附树脂及其在中药领域应用研究进展. 中国药事, 2022, 36(7): 826-835.

doi: 10.16153/j.1002-7777.2022.06.012
WANG D D, LIU Y X, ZUO T T, ZAN K, JIN H Y. Research progress of macroporous adsorption resin and its application in traditional Chinese medicines. Chinese Pharmaceutical Affairs, 2022, 36(7): 826-835. (in Chinese)

doi: 10.16153/j.1002-7777.2022.06.012
[29]
杨楠, 阮国永, 王朝玉, 杨建波, 刘云, 谢飞燕, 李长军, 潘峰. 利用大孔吸附树脂同时清除云实根粗多糖色素和蛋白成分的研究. 贵州师范大学学报(自然科学版), 2023, 41(5): 107-113.
YANG N, RUAN G Y, WANG C Y, YANG J B, LIU Y, XIE F Y, LI C J, PAN F. Study on simultaneous decoloration and deproteinization of crude polysaccharide from the root of Caesalpinia decapetala by using macroporous adsorption resin. Journal of Guizhou Normal University (Natural Sciences), 2023, 41(5): 107-113. (in Chinese)
[30]
赵沙沙, 何海, 张小荣, 郭玫, 崔治家, 邵晶. 红芪多糖 “脱蛋白-大孔吸附树脂” 的纯化富集工艺考察. 药物流行病学杂志, 2023, 32(6): 679-688.
ZHAO S S, HE H, ZHANG X R, GUO M, CUI Z J, SHAO J. Study on purification and enrichment technology of Hedysarum polysaccharide “deproteinization-macroporous adsorption resin”. Chinese Journal of Pharmacoepidemiology, 2023, 32(6): 679-688. (in Chinese)
[31]
SPÓRNA-KUCAB A, JERZ G, KUMORKIEWICZ-JAMRO A, TEKIELI A, WYBRANIEC S. High-speed countercurrent chromatography for isolation and enrichment of betacyanins from fresh and dried leaves of Atriplex hortensis L. var. “Rubra”. Journal of Separation Science, 2021, 44(23): 4222-4236.
[32]
YUAN J J, TUO S, SHI X H, TU J L. A new combined technology: Macroporous adsorption resin and high speed counter current chromatography for hydroxytyrosol separation from olive leaf enzymatic hydrolysate. Journal of Chromatography B, 2024, 1235: 124058.
[33]
宋道光, 陈志. 高速逆流色谱法从小叶金钱草中分离四种黄酮苷类化合物. 食品工业科技, 2022, 43(24): 93-101.
SONG D G, CHEN Z. Separation of four flavonoid glycosides from Hydrocotyle sibthorpioides Lam. by high-speed counter-current chromatography. Science and Technology of Food Industry, 2022, 43(24): 93-101. (in Chinese)
[34]
YANG X, SHEN C, LI H M, WANG N N, MA J L, WANG S, ZHAO J Y, CHEN J L, YANG L, CHEN T, LI Y L. Combined chromatographic strategy based on macroporous resin, high-speed counter-current chromatography and preparative HPLC for systematic separation of seven antioxidants from the fruit of Terminalia billerica. Journal of Separation Science, 2019, 42(20): 3191-3199.
[35]
CHEN T, LIU Y L, CHEN C, ZOU D L, YOU J M, SUN J, LI Y L. Application of high-speed counter-current chromatography combined with macroporous resin for rapid enrichment and separation of three anthraquinone glycosides and one stilbene glycoside from Rheum tanguticum. Journal of Chromatography B, 2014, 957: 90-95.
[36]
WANG G, CHEN W H, HU J Q, FAN B, SHI J R, XU J H. Preparative isolation and purification of Zearalenone from rice culture by combined use of macroporous resin column and high-speed counter-current chromatography. Journal of Chromatography B, 2019, 1110: 43-50.
[37]
WANG G, HE D, ZHAO F C, HU J Q, LEE Y W, SHI J R, XU J H. Extraction and purification of ustiloxin A from rice false smut balls by a combination of macroporous resin and high-speed countercurrent chromatography. Food Production, Processing and Nutrition, 2020, 2(1): 29.
[1] GAO Ying,XUE Jiao-liang,FAN San-hong,FAN Jin-hua,XIE Ying-ping
. Isolation and Purification of Toxins from a Strain of Beauveria brongniartii and Their Toxicity to the Larvae of Dendrolimus tabulaeformis
[J]. Scientia Agricultura Sinica, 2010, 43(15): 3125-3133 .
[2] CHEN Hai-ying,LIAO Fu-ping,LIN Jian-rong. Isolation and Structure Analysis of the Components of Anti-Gram- Negative Bacteria by the Strain CP7 of Paenibacillus polymyxa
[J]. Scientia Agricultura Sinica, 2009, 42(6): 2105-2110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!