Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (14): 2787-2797.doi: 10.3864/j.issn.0578-1752.2023.14.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Influencing Factors of Gluten Network Structure Analysis Using Confocal Laser Scanning Microscopy

JIANG JiKai1,2(), ZHANG YingQuan1, GUO BoLi1(), YANG JingJie1, HUANG LuYao1, LI Ming1, ZHONG Geng2   

  1. 1 Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193
    2 College of Food Science Southwest University, Chongqing 400715
  • Received:2022-12-02 Accepted:2023-01-31 Online:2023-07-16 Published:2023-07-21
  • Contact: GUO BoLi

Abstract:

【Objective】The thickness of sample slices, the concentration of staining solution and the staining time are the key factors influencing the results of gluten network structure analysis using confocal laser scanning microscopy (CLSM). The aim of this study was to investigate the effects of the slice thickness, the staining solution concentration and the staining time on the CLSM results of gluten network structure, and the optimal slice thickness and staining conditions for the dough structure analysis were selected, so as to provide a technical support for the studies on dough structure and/or its final products. 【Method】Two wheat varieties, i.e., Zhengmai 366 (Z366) and Xiaoyan 22 (X22) with different wet gluten indexes, were selected as raw materials, which were milled and made into dough, respectively. Then, the dough samples were frozen for 0 and 1 day. The dough slice thickness was set as 10, 14 and 20 μm, respectively. Meanwhile, two concentrations of staining solution (0.001%+0.01%, 0.025%+0.25%) using Rhodamine B (RDB) and fluorescein isothiocyanate (FITC) were prepared. The staining time was set for 1, 10 and 20 min, respectively. 【Result】The sample slice with 10 μm thickness showed the best and clearest image for both doughs of Z366 and X22. Besides, under this slice thickness, the gluten network of the dough frozen stored for 0 day showed the most obvious difference compared with that for 1 day (P<0.01). Additionally, under low-concentration staining agent (0.001%+0.01%), the clearer the results of gluten network structure were obtained with longer staining time. Oppositely, under the high-concentration staining agent (0.025%+0.25%), the slice with a staining time of 1 min showed the most rational results on the gluten network structure, whereas the result on the slice with a staining time of 10 min was the worst. 【Conclusion】The gluten network structure of dough with different protein content and freezing treatments demonstrated more differences when the thickness of dough slices was 10 μm, indicating the gluten network structure of different samples could be distinguished obviously. Under the selected thickness, the gluten network structure of 20 min stained with low-concentration mixed staining agent showed the best effect if time-consuming was not considered. Moreover, the high-concentration staining for 1 min was time-saving and better for observing the structure of starch granules.

Key words: confocal laser scanning microscopy, gluten network structure, slice thickness, mixed staining agent

Table 1

The compositions of Zhengmai 366 and Xiaoyan 22 wheat flour"

样品
Sample
灰分(干基)
Ash (dry basis, %)
水分
Moisture (%)
蛋白含量(干基)
Protein content (dry basis, %)
湿面筋含量(湿基,含水量14%)
Wet Gluten (wet basis, moisture content 14%)
Z366 0.47 12.55 13.19 30.14
X22 0.45 11.16 13.57 31.21

Table 2

Farinograph parameters and HMW glutenin subunits of Zhengmai 366 and Xiaoyan 22 wheat flour"

样品
Sample
吸水率
Water absorption
(%)
形成时间
Development time
(min)
稳定时间
Stability time
(min)
弱化度
Degree of softening (FU)
粉质质量指数
Farinograph quality number (mm)
高分子谷蛋白亚基
HMW glutenin subunit
Z366 68.50 9.2 10.5 66 141 1,7+8,5+10
X22 69.20 2.7 1.3 139 37 N,7+9,2+12

Fig. 1

Effect of slice thickness on gluten network structure image of dough A1-A3: Zhengmai 366 was frozen for 0 day, and the thickness of sections was 10, 14 and 20 μm, respectively. a1-a3: Zhengmai 366 was frozen for 1 day, and the thickness of sections was 10, 14 and 20 μm, respectively. B1-B3: Xiaoyan 22 was frozen for 0 day, and the thickness of sections was 10, 14 and 20 μm, respectively. b1-b3: Xiaoyan 22 was frozen for 1 day, and the thickness of sections was 10, 14 and 20 μm, respectively"

Fig. 2

Effects of different slice thicknesses on the quantitative analysis of gluten network structure Z366-1, X22-1: Zhengmai 366 and Xiaoyan 22 were frozen for 0 day, respectively; Z366-2, X22-2: Zhengmai 366 and Xiaoyan 22 were frozen for 1 day, respectively"

Table 3

Independent sample T-test of the same slice thickness of Zhengmai 366 and Xiaoyan 22 frozen dough for 0 and 1 day"

品种
Variety
切片厚度
Thickness of section (μm)
冷冻时间
Freezing time (d)
面筋百分比面积Gluten percentage area (%) t
(显著性)
t-value (significance)
分支率Branching rate
(×10-3)
t
(显著性)
t-value (significance)
节点密度Junctions density
(×10-4)
t
(显著性)
t-value (significance)
平均面筋长度Average gluten length
(×102μm)
t
(显著性)
t -value (significance)
端点率End-point rate
(×10-3)
t
(显著性)
t-value (significance)
空隙度Lacunarity(×10-2 t
(显著性)
t-value (significance)
Z366 10 0 40.91±1.62 7.920** 2.54±1.28 6.044** 10.40±0.82 8.881** 2.52±0.14 4.059** 2.40±0.11 1.435 7.57±0.70 -7.517**
1 35.64±1.66 2.14±0.17 7.64±0.75 2.19±0.34 2.33±0.13 10.41±0.99
14 0 38.08±1.40 3.048** 2.00±0.81 -1.264 7.61±0.29 0.325 2.13±0.13 1.390 1.92±0.21 -5.771** 10.08±0.37 -2.345*
1 35.61±1.47 2.10±0.15 7.48±0.74 1.91±0.31 2.41±0.14 10.79±0.98
20 0 35.11±2.26 1.859 2.11±1.49 2.532* 7.40±0.77 2.781* 1.95±0.34 2.458* 2.38±0.16 -2.056 11.02±1.49 -1.640
1 33.18±1.96 1.94±0.12 6.45±0.63 1.58±0.28 2.61±0.23 12.06±1.16
X22 10 0 34.64±1.35 3.141** 2.09±0.14 6.413** 7.25±0.72 5.652** 9.74±0.20 4.295** 2.57±0.20 -2.470* 10.39±0.89 -4.951**
1 32.34±1.50 1.81±0.08 5.98±0.45 10.41±0.37 2.77±0.24 12.32±1.13
14 0 35.20±1.49 2.920* 2.02±0.16 2.635* 7.10±0.52 4.947* 10.04±0.54 4.025** 2.44±0.21 -2.077 10.54±0.76 -3.106**
1 33.02±1.58 1.82±0.16 5.98±0.43 10.52±0.64 2.64±0.20 12.04±1.13
20 0 33.05±1.70 1.427 2.05±0.13 6.442** 6.77±0.60 5.475** 9.76±0.24 5.193** 2.72±0.21 -2.086 11.46±1.11 -2.189*
1 31.99±1.70 1.72±0.11 5.50±0.46 10.58±0.42 2.93±0.27 12.53±1.13

Fig. 3

Effects of different staining concentrations and staining times on gluten network structure image P-1, P-10, P-20, S-1, S-10, and S-20: The staining time of gluten protein and starch was 1, 10 and 20 min, with the mixture of 0.001% RDB and 0.01% FITC, respectively; p-1, p-10, p-20, s-1, s-10, and s-20: The staining time of gluten protein and starch was 1, 10 and 20 min, with the mixture of 0.025% RDB and 0.25% FITC, respectively"

Table 4

Effects of staining concentration and staining time on the quantitative analysis of gluten network structure of different varieties frozen dough for 0 day"

品种
Variety
浓度(罗丹明B+异硫氰酸荧光素)
Concentration (RDB+FITC, %)
时间
Time
(min)
面筋百分比面积
Gluten percentage area (%)
分支率
Branching rate
(×10-3)
节点密度
Junctions density
(×10-4)
平均面筋长度
Average gluten length
(×102 μm)
端点率
End-point rate
(×10-3)
空隙度
Lacunarity
(×10-2)
Z366 0.001+0.01 1 30.59±1.04bC 1.93±0.08cD 5.89±0.36bD 1.67±0.14bC 2.50±0.12aB 14.17±1.16aB
10 29.69±1.83bCD 2.13±0.09bC 6.34±0.66bCD 1.74±0.31bC 2.55±0.25aB 15.53±1.30aA
20 34.63±0.72aB 2.50±0.05aB 8.64±0.12aB 2.47±0.24aB 2.15±0.07bC 11.38±0.72bC
0.025+0.25 1 37.53±1.64aA 2.67±0.10aA 10.01±0.72aA 3.58±0.86aA 2.06±0.20bD 8.86±0.71cD
10 28.60±1.46cD 1.71±0.15cE 4.89±0.60cE 1.10±0.19bD 2.90±0.39aA 15.64±0.87aA
20 30.94±0.91bC 2.16±0.11bC 6.68±0.50bC 1.45±0.20bCD 2.70±0.21aAB 13.30±0.88bB
X22 0.001+0.01 1 33.12±1.65aA 1.83±0.15bB 6.05±0.59bB 1.34±0.26abBC 2.81±0.24abBC 11.87±1.03bCD
10 29.17±1.25bB 1.72±0.14bB 5.01±0.43cC 1.12±0.14bCD 2.89±0.22aBC 15.59±1.17aB
20 33.61±1.87aA 2.06±0.12aA 6.93±0.78aA 1.64±0.36aA 2.53±0.20bD 11.91±1.23bCD
0.025+0.25 1 33.75±2.09aA 1.87±0.13aB 6.29±0.47aB 1.47±0.20aAB 2.65±0.19bCD 11.17±1.10cD
10 27.65±1.30cB 1.48±0.07cC 4.09±0.30cD 0.99±0.12bD 2.93±0.19aA 17.22±1.75aA
20 31.72±2.22bA 1.79±0.13bB 5.67±0.63bB 1.32±0.16aBC 2.87±0.16aBC 12.87±1.88bC

Table 5

Effects of staining concentration and staining time on the quantitative analysis of gluten network structure of different varieties frozen dough for 1 day"

品种
Variety
浓度(罗丹明B+异硫氰酸荧光素)
Concentration (RDB+FITC, %)
时间
Time
(min)
面筋百分比面积
Gluten percentage area (%)
分支率
Branching rate
(×10-3)
节点密度
Junctions density
(×10-4)
平均面筋长度
Average gluten length
(×102 μm)
端点率
End-point rate
(×10-3)
空隙度
Lacunarity
(×10-2)
Z366 0.001+0.01 1 31.69±0.51bB 1.92±0.04cC 6.09±0.19cC 1.51±0.27bB 2.79±0.18aB 12.21±0.26aB
10 33.40±1.54aA 2.04±0.07bBC 6.81±0.49bB 1.89±0.24aA 2.39±0.20bC 11.72±1.00aBC
20 32.84±0.81abAB 2.43±0.10aA 7.98±0.42aA 1.88±0.19aA 2.53±0.22bC 12.00±0.74aBC
0.025+0.25 1 34.24±1.15aA 2.13±0.12aB 7.29±0.53aB 1.89±0.19aA 2.39±0.14bC 10.92±0.66bC
10 29.56±0.94cC 1.69±0.15cD 5.00±0.50cD 1.10±0.17bC 2.88±0.28aA 14.10±0.78aA
20 31.59±1.75bB 1.90±0.11bC 6.02±0.54bC 1.69±0.32aAB 2.35±0.28bC 13.64±1.90aB
X22 0.001+0.01 1 29.36±1.35cD 1.54±0.07cD 4.51±0.14cD 1.00±0.06cD 3.05±0.13aA 14.57±1.53aA
10 32.94±0.75bBC 1.85±0.13bB 6.11±0.52bBC 1.54±0.22bB 2.67±0.12bB 11.53±0.69bC
20 36.36±1.06aA 2.08±0.09aA 7.59±0.48aA 2.02±0.30aA 2.41±0.16cC 9.60±0.77cD
0.025+0.25 1 32.57±2.56aC 1.87±0.16aB 6.12±0.96abBC 1.49±0.35aB 2.66±0.24aB 12.73±1.69aB
10 32.20±1.35aC 1.71±0.08bC 5.52±0.43bC 1.17±0.15bCD 2.93±0.22aA 11.78±0.78bBC
20 34.33±1.80aB 1.85±0.07aB 6.36±0.51aB 1.43±0.33abBC 2.82±0.25aAB 10.34±1.02cD
[1]
王强, 李琳, 鞠兴荣, 赵国华, 张洪斌, 饶平凡, 汪少芸, 许小娟, 石爱民, 刘红芝. 多尺度结构变化与食品品质功能调控研究进展. 中国食品学报, 2022, 22(1): 1-11.
WANG Q, LI L, JU X R, ZHAO G H, ZHANG H B, RAO P F, WANG S Y, XU X J, SHI A M, LIU H Z. Research progress on multi-scale structure change and quality function of food. Journal of Chinese Institute of Food Science and Technology, 2022, 22(1): 1-11. (in Chinese)
[2]
张毅. 制面过程小麦面团特性及面筋网络结构影响机理的研究[D]. 郑州: 河南工业大学, 2021.
ZHANG Y. Study on the characteristics of wheat dough and the influence mechanism of gluten network structure during dough making[D]. Zhengzhou: Henan University of Technology, 2021. (in Chinese)
[3]
孟莲, 周惠明, 朱科学, 郭晓娜. 揉面过程中面团面筋蛋白结构的变化. 食品与机械, 2020, 36(2): 19-24.
MENG L, ZHOU H M, ZHU K X, GUO X N. Study on the changes of dough gluten protein structure during kneading. Food & Machinery, 2020, 36(2): 19-24. (in Chinese)
[4]
张海华, 朱科学, 周惠明. 超声波对小麦面筋蛋白结构的影响. 中国农业科学, 2010, 43(22): 4687-4693. doi: 10.3864/j.issn.0578-1752.2010.22.016.

doi: 10.3864/j.issn.0578-1752.2010.22.016
ZHANG H H, ZHU K X, ZHOU H M. Effect of ultrasonic on the structure of wheat gluten protein. Scientia Agricultura Sinica, 2010, 43(22): 4687-4693. doi: 10.3864/j.issn.0578-1752.2010.22.016. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2010.22.016
[5]
SUN R, ZHANG Z M, HU X J, XING Q H, ZHUO W Y. Effect of wheat germ flour addition on wheat flour, dough and Chinese steamed bread properties. Journal of Cereal Science, 2015, 64: 153-158.

doi: 10.1016/j.jcs.2015.04.011
[6]
SIVAM A S, SUN-WATERHOUSE D, QUEK S, PERERA C O. Properties of bread dough with added fiber polysaccharides and phenolic antioxidants: A review. Journal of Food Science, 2010, 75(8): R163-R174.

doi: 10.1111/j.1750-3841.2010.01815.x
[7]
吴迪, 王佳玉, 汤晓智, 胡秋辉. 外源蛋白添加对全麦面团特性和面包品质的影响. 中国农业科学, 2021, 54(6): 1258-1269. doi: 10.3864/j.issn.0578-1752.2021.06.015.

doi: 10.3864/j.issn.0578-1752.2021.06.015
WU D, WANG J Y, TANG X Z, HU Q H. Influence of exogenous protein addition on whole wheat dough properties and bread quality characteristics. Scientia Agricultura Sinica, 2021, 54(6): 1258-1269. doi: 10.3864/j.issn.0578-1752.2021.06.015. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.06.015
[8]
DÜRRENBERGER M B, HANDSCHIN S, CONDE-PETIT B, ESCHER F. Visualization of food structure by confocal laser scanning microscopy (CLSM). LWT-Food Science and Technology, 2001, 34(1): 11-17.

doi: 10.1006/fstl.2000.0739
[9]
WANG C C, YANG Z, XING J J, GUO X N, ZHU K X. Effects and underlying mechanisms of insoluble dietary fiber and ferulic acid on the crumb structure of steamed bread. Food Hydrocolloids, 2022, 125: 107448.

doi: 10.1016/j.foodhyd.2021.107448
[10]
LUCAS I, BECKER T, JEKLE M. Gluten polymer networks—a microstructural classification in complex systems. Polymers, 2018, 10(6): 617.

doi: 10.3390/polym10060617
[11]
SILVA E, BIRKENHAKE M, SCHOLTEN E, SAGIS L M C, VAN DER LINDEN E. Controlling rheology and structure of sweet potato starch noodles with high broccoli powder content by hydrocolloids. Food Hydrocolloids, 2013, 30(1): 42-52.

doi: 10.1016/j.foodhyd.2012.05.002
[12]
ZHANG M L, MA M, YANG T B, LI M, SUN Q J. Dynamic distribution and transition of gluten proteins during noodle processing. Food Hydrocolloids, 2022, 123: 107114.

doi: 10.1016/j.foodhyd.2021.107114
[13]
YANG Y L, GUAN E Q, ZHANG T J, LI M M, BIAN K. Comparison of rheological behavior, microstructure of wheat flour doughs, and cooking performance of noodles prepared by different mixers. Journal of Food Science, 2020, 85(4): 956-963.

doi: 10.1111/1750-3841.15057 pmid: 32159235
[14]
ZHAN J, MA S, WANG X X, LI L, ZHENG X L. Effect of baked wheat germ on gluten protein network in steamed bread dough. International Journal of Food Science & Technology, 2019, 54(10): 2839-2846.
[15]
许佳玲, 罗剑文, 龙钊, 陈云凤, 王晓红, 张以顺. ZEISS LSM 780激光扫描共聚焦显微镜的三维成像及分析. 电子显微学报, 2018, 37(1): 71-76.
XU J L, LUO J W, LONG Z, CHEN Y F, WANG X H, ZHANG Y S. The three-dimensional imaging and analysis by using ZEISS LSM 780 laser scanning confocal microscopy. Journal of Chinese Electron Microscopy Society, 2018, 37(1): 71-76. (in Chinese)
[16]
何路旦, 郭晓娜, 朱科学. 添加豆浆对冷冻熟面品质的影响. 食品与生物技术学报, 2019, 38(8): 46-52.
HE L D, GUO X N, ZHU K X. Effects of soybean milk addition on qualities of frozen-cooked noodles. Journal of Food Science and Biotechnology, 2019, 38(8): 46-52. (in Chinese)
[17]
LUCAS I, STAUNER B, JEKLE M, BECKER T. Staining methods for dough systems-Impact on microstructure and functionality. LWT, 2018, 88: 139-145.

doi: 10.1016/j.lwt.2017.10.010
[18]
HACKENBERG S, JEKLE M, BECKER T. Mechanical wheat flour modification and its effect on protein network structure and dough rheology. Food Chemistry, 2018, 248: 296-303.

doi: S0308-8146(17)32019-8 pmid: 29329858
[19]
JAKLOVÁ DYTRTOVÁ J, MOSLOVA K, JAKL M, SIRÉN H, RIEKKOLA M L. Fluorescein isothiocyanate stability in different solvents. Monatshefte Für Chemie-Chemical Monthly, 2021, 152(11): 1299-1306.

doi: 10.1007/s00706-021-02852-1
[20]
ZHAO F F, LI Y, LI C M, BAN X F, GU Z B, LI Z F. Glycosyltransferases improve breadmaking quality by altering multiscale structure in gluten-free bread. Food Hydrocolloids, 2022, 133: 107951.

doi: 10.1016/j.foodhyd.2022.107951
[21]
ZHANG L L, GUAN E Q, YANG Y L, LIU Y X, ZHANG T J, BIAN K. Impact of wheat globulin addition on dough rheological properties and quality of cooked noodles. Food Chemistry, 2021, 362: 130170.

doi: 10.1016/j.foodchem.2021.130170
[22]
ZHANG M L, MA M, JIA R B, YANG T B, SUN Q J, LI M. Delineating the dynamic transformation of gluten morphological distribution, structure, and aggregation behavior in noodle dough induced by mixing and resting. Food Chemistry, 2022, 386: 132853.

doi: 10.1016/j.foodchem.2022.132853
[23]
JIA F, WANG J S, WANG Q, ZHANG X, CHEN, CHEN Y, ZHANG C F. Effect of extrusion on the polymerization of wheat glutenin and changes in the gluten network. Journal of Food Science and Technology, 2020, 57(10): 3814-3822.

doi: 10.1007/s13197-020-04413-6 pmid: 32884158
[24]
JIA F, WANG J S, CHEN Y, ZHANG X, WANG Q, CHEN D, ZHANG C F. Effect of oil contents on gluten network during the extrusion processing. Czech Journal of Food Sciences, 2019, 37(4): 226-231.

doi: 10.17221/31/2018-CJFS
[25]
NAWROCKA A, RUMIŃSKA W, SZYMAŃSKA-CHARGOT M, NIEWIADOMSKI Z, MIŚ A. Effect of fluorescence dyes on wet gluten structure studied with fluorescence and FT-Raman spectroscopies. Food Hydrocolloids, 2022, 131: 107820.

doi: 10.1016/j.foodhyd.2022.107820
[26]
李翠翠, 闫慧丽, 刘紫鹏. 巯基、二硫键对面团流变学特性的影响. 中国食品学报, 2020, 20(12): 96-102.
LI C C, YAN H L, LIU Z P. Effects of sulfydryl groups and disulfide bonds on the rheological properties of dough. Journal of Chinese Institute of Food Science and Technology, 2020, 20(12): 96-102. (in Chinese)
[27]
路建龙, 逄蕾, 柴守玺. HMW-GS对春小麦品质的影响及不同亚基评分比较. 核农学报, 2017, 31(1): 80-87.

doi: 10.11869/j.issn.100-8551.2017.01.0080
LU J L, PANG L, CHAI S X. Effects of HMW-GS on quality properties of spring wheat and evaluation of subunit score system. Journal of Nuclear Agricultural Sciences, 2017, 31(1): 80-87. (in Chinese)

doi: 10.11869/j.issn.100-8551.2017.01.0080
[28]
陈丽. 冷冻对非发酵面团水分状态和冰晶形态的影响[D]. 北京: 中国农业科学院, 2021.
CHEN L. Effect of freezing on moisture state and ice crystal morphology of non-fermented dough[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
[29]
FERRI G L, COCCO C, MELIS G V, ASTE L. Equipment testing and tuning: The cold-knife cryomicrotome microm HM-560. Applied Immunohistochemistry & Molecular Morphology, 2002, 10(4): 381-386.
[30]
VERBAUWHEDE A E, LAMBRECHT M A, JEKLE M, LUCAS I, FIERENS E, SHEGAY O, BRIJS K, DELCOUR J A. Microscopic investigation of the formation of a thermoset wheat gluten network in a model system relevant for bread making. International Journal of Food Science & Technology, 2020, 55(2): 891-898.
[31]
BERNKLAU I, LUCAS L, JEKLE M, BECKER T. Protein network analysis-A new approach for quantifying wheat dough microstructure. Food Research International, 2016, 89: 812-819.

doi: 10.1016/j.foodres.2016.10.012
[32]
RHEINLAENDER J, SCHÄFFER T E. The effect of finite sample thickness in scanning ion conductance microscopy stiffness measurements. Applied Physics Letters, 2020, 117(11): 113701.

doi: 10.1063/5.0024863
[33]
周一鸣, 张亚园, 吕欣东, 刘倩, 李云龙, 蒋晴怡, 周小理. 复合改良剂对后发酵馒头冷冻面团冻藏品质的影响. 农业工程学报, 2020, 36(16): 274-282.
ZHOU Y M, ZHANG Y Y, X D, LIU Q, LI Y L, JIANG Q Y, ZHOU X L. Effect of compound quality improver on the frozen quality of frozen dough for steamed bread. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 274-282. (in Chinese)
[34]
陈建省, 邓志英, 吴澎, 田纪春, 谢全刚. 添加面筋蛋白对小麦淀粉糊化特性的影响. 中国农业科学, 2010, 43(2): 388-395.
CHEN J S, DENG Z Y, WU P, TIAN J C, XIE Q G. Effect of added gluten on pasting properties of wheat starch. Scientia Agricultura Sinica, 2010, 43(2): 388-395. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!