Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (14): 2751-2760.doi: 10.3864/j.issn.0578-1752.2023.14.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Rapid Identification for Bradyrhizobium japonicum 5873 by PCR and Its Evaluation in Application

MA MingChao(), JIANG Xin(), WANG PengHui, GUAN DaWei, LI Jun   

  1. Institute of Agricultural Resources and Agricultural Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2022-11-13 Accepted:2022-12-21 Online:2023-07-16 Published:2023-07-21
  • Contact: JIANG Xin

Abstract:

【Objective】Bradyrhizobium japonicum is one of the important functional bacteria in microbial fertilizer products. As a commercialized strain, B. japonicum 5873 was wildly used in agricultural production and played important roles in symbiotic nitrogen fixation. Therefore, it is necessary to establish a rapid identification method at the strain level by screening and identifying specific primers for rhizobia, and is of great importance in the aspects of microbial fertilizer product quality inspection, strain identification and function evaluation.【Method】According to the whole genome sequencing of B. japonicum 5873 and other strain related sequences from NCBI, as well as the differential fragments of B. japonicum USDA 6T which is highly homologous to B. japonicum 5873 (the ANI value of the genome is greater than 99.95%), specific PCR primers were designed and obtained. After optimization of PCR reaction conditions and the detection of sensitivity and specificity, a rapid detection method for B. japonicum 5873 was established. Then, using pot experiment, B. japonicum 5873 was mixed with other rhizobium strains and inoculated in the soybean rhizosphere, and the above method was used to evaluate the competitive nodulation ability of B. japonicum 5873.【Result】A set of species-specific primers 4-4 and Q1 (4-4-F 5′-GATAAGGCCACGGGTGAACA-3′/4-4-R 5′-CACTCGATAAGCTCCGCTGT-3′ and Q1-F 5′-CCGGTCGTGACTGGAATGAT-3′/Q1-R 5′-TCGAGGCCTACAAGAACGTC -3′), were successfully designed to selectively amplify 355 and 218 bp amplicon from B. japonicum 5873. Well specificity was demonstrated by reference strains, from which only the targeted bands of B. japonicum 5873 were observed. Amplifications were performed in a 25 μL reaction mixture, which contained Premix TaqTM 12.5 μL, template DNA (15 ng of genomic DNA), primers 4-4 and Q1 (1.0 μL, respectively). The PCR cycling consisted of one cycle of 5 min at 95 ℃ and 30 cycles of 45 s at 94 ℃, 45 s at 61 ℃, and 60 s at 72 ℃. A final extension step was run for 10 min at 72 ℃. The sensitivity was 1 850 CFU/µL. In addition, the method mentioned above was successfully used to evaluate the competitive nodulation ability of B. japonicum 5873, which was consistent with the results of traditional BOX-PCR identification.【Conclusion】The established rapid detection method can directly use the bacterial solution or squeezed nodules as templates, which will eliminate laborious tasks, such as processes of nodule isolation, purification, culture, DNA extraction, sequencing and sequence comparison. It only takes a few hours to accurately detect B. japonicum 5873, which provides a reference for product quality detection and competitive nodulation ability evaluation of microbial fertilizers.

Key words: Bradyrhizobium japonicum, strain-specific primer pair, PCR amplification

Table 1

The strains used in this study"

种Species 菌株编号No. of strain
大豆根瘤菌
Bradyrhizobium japonicum
USDA 6T, 5821, 5841, 5876, 5547, 5588, 5665, 5129, 4892, 5452, 5599, 5016, 5437, 4129, 4470, 4530, 4438, 5248, 4784, 5528, 5412, 5260, 4503, 5039, 4248, 5240, 5190, 5742, 4855, 4794, 4291, 4698, 5128, 4770, 4296, 4207, 4543
有效慢生根瘤菌Bradyrhizobium diazoefficiens USDA 110T, 5119
埃氏慢生根瘤菌Bradyrhizobium elkanii 5136, 5161, 5109
弗氏中华根瘤菌Sinorhizobium fredii USDA 205T, 4475
奥氏根瘤菌Rhizobium alamii 4370

Fig. 1

Comparison of sequence diversity of the two strains"

Fig. 2

Schematic diagram for the design of specific sequence primers"

Table 2

Design results of specific sequence primers for B. japonicum 5873 in primer-BLAST"

引物Primer 序列Sequence (5′-3′) 长度Length (bp) Tm GC (%)
4-4 Forward primer GATAAGGCCACGGGTGAACA 20 60.04 55.00
4-4 Reverse primer CACTCGATAAGCTCCGCTGT 20 59.90 55.00
Q1 Forward primer CCGGTCGTGACTGGAATGAT 20 59.82 55.00
Q1 Reverse primer TCGAGGCCTACAAGAACGTC 20 59.48 55.00

Fig. 3

PCR results of No.4-4 primer specificity (355 bp) A: M: 2-Log ladder Marker. 1: B. japonicum 5873; 2: B. japonicum 5841; 3: B. elkanii 5136; 4: B. diazoefficiens 5119; 5-17: B. japonicum 5821, 5129, 4892, 5452, 5599, 5016, 5437, 4129, 4470, 4530, 4438, 5547, 5248; 18: S. fredii 4475; 19: R. alamii 4370; 20-24: B. japonicum 5876, 4784, 5528, 5412, 5260. B: M: 2-Log ladder Marker. 1: B. japonicum 5873; 25: B. diazoefficiens USDA 110T; 26: B. japonicum 5665; 27: S. fredii USDA 205T; 28-33: B. japonicum 5588, 4503, 5039, 4248, 5240, 5190; 34-35: B. elkanii 5109, 5161; 36-45: B. japonicum 5742, 4855, 4794, 4291, 4698, 5128, 4770, 4296, 4207, 4543; 46: B. japonicum USDA 6T"

Fig. 4

PCR results of different primers"

Fig. 5

Amplification products of B. japonicum 5873 under different conditions and the optimized amplification procedure"

Table 3

The nodule occupancy of B. japonicum 5873"

复合接种
Co-inoculation
占瘤率Nodule occupancy (%)
快速检测技术
Rapid identification
BOX-PCR
B. diazoefficiens USDA 110T+
B. japonicum 5873
78.3±1.2 76.9±2.2
B. japonicum 5136+B. japonicum 5873 73.7±1.6 76.0±1.7
B. japonicum 5665+B. japonicum 5873 84.2±0.9 82.1±2.5
B. japonicum 5841+B. japonicum 5873 87.0±1.6 85.5±2.6
B. japonicum 5821+B. japonicum 5873 95.2±1.9 92.9±0.9
B. japonicum 5119+B. japonicum 5873 87.5±1.3 85.8±1.9
[1]
张启发. 资源节约型、环境友好型农业生产体系的理论与实践. 北京: 科学出版社, 2015.
ZHANG Q F. Theory and Practice of Resource-Conservation and Environment-Friendly Agricultural Production System. Beijing: Science Press, 2015. (in Chinese)
[2]
李俊, 姜昕, 黄为一, 马鸣超. 微生物肥料生产应用技术百问百答. 北京: 中国农业出版社, 2019: 18-19.
LI J, JIANG X, HUANG W Y, MA M C. Q & A Center for the Application Technology of Biofertilizer. Beijing: China Agriculture Press, 2019: 18-19. (in Chinese)
[3]
ZHU J, JIANG X, GUAN D W, KANG Y W, LI L, CAO F M, ZHAO B S, MA M C, ZHAO J, LI J. Effects of rehydration on physiological and transcriptional responses of a water-stressed rhizobium. Journal of Microbiology, 2022, 60: 31-46.

doi: 10.1007/s12275-022-1325-7
[4]
MUS F, CROOK M B, GARCIA K, COSTAS A G, GEDDES B A, KOURI E D, PARAMASIVAN P, RYU M H, OLDROYD G E D, POOLE P S, UDVARDI M K, VOIGT C A, ANE J M, PETERS J W. Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Applied and Environmental Microbiology, 2016, 82(13): 3698-3710.

doi: 10.1128/AEM.01055-16 pmid: 27084023
[5]
ORMENO-ORRILLO E, MARTÍNEZ-ROMERO E. Phenotypic tests in Rhizobium species description: An opinion and (a sympatric speciation) hypothesis. Systematic and Applied Microbiology, 2013, 36(3): 145-147.

doi: 10.1016/j.syapm.2012.11.009
[6]
陈文峰. 根瘤菌系统学研究进展与展望. 微生物学通报, 2016, 43(5): 1095-1100.
CHEN W F. Progress and perspective of systematics of rhizobia. Microbiology China, 2016, 43(5): 1095-1100. (in Chinese)
[7]
KALITA M, MALEK W. The ftsA gene as a molecular marker for phylogenetic studies in Bradyrhizobium and identification of Bradyrhizobium japonicum. Journal of Applied Genetics, 2019, 60(1): 123-126.

doi: 10.1007/s13353-018-0479-9
[8]
STEPKOWSKI T, ZAK M, MOULIN L, KROLICZAK J, GOLINSKA B, NAROZNA D, SAFRONOVA V I, MADRZAK C J. Bradyrhizobium canariense and Bradyrhizobium japonicum are the two dominant rhizobium species in root nodules of lupin and serradella plants growing in Europe. Systematic and Applied Microbiology, 2011, 34(5): 368-375.

doi: 10.1016/j.syapm.2011.03.002
[9]
VINUESA P, LEON-BARRIOS M, SILVA C, WILLEMS A, JARABO-LORENZO A, PEREZ-GALDONA R, WERNER D, MARTINEZ-ROMERO E. Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(2): 569-575.

doi: 10.1099/ijs.0.63292-0
[10]
RIVAS R, MARTENS M, LAJUDIE P, WILLEMS A. Multilocus sequence analysis of the genus Bradyrhizobium. Systematic and Applied Microbiology, 2009, 32(2): 101-110.

doi: 10.1016/j.syapm.2008.12.005
[11]
MENNA P, BARCELLOS F G, HUNGRIA M. Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(12): 2934-2950.

doi: 10.1099/ijs.0.009779-0
[12]
REHMAN N, ABBAS F, IMRAN M, ALAM I, IMRAN M, ULLAH I, RIAZ M, KHAN F U. Genome wide analysis of DWARF27 genes in soybean and functional characterization of GmD27c reveals eminent role of strigolactones in rhizobia interaction and nodulation in Glycine max. Molecular Biology Reports, 2022, 49(6): 5405-5417.

doi: 10.1007/s11033-022-07127-4
[13]
JI Z J, LIU T Y, ZHANG J X, YAN H, WANG E T, CUI Q G, CHEN W X, CHEN W F. Genetic divergence among Bradyrhizobium strains nodulating wild and cultivated Kummerowia spp. in China. Systematic and Applied Microbiology, 2019, 42: 223-231.

doi: 10.1016/j.syapm.2018.10.003
[14]
TORRES D, REVALE S, OBANDO M, MARONICHE G, PARIS G, PERTICARI A, VAZQUEZ M, WISNIEWSKI-DYE F, MARTINEZ- ABARCA F, CASSAN F. Genome sequence of Bradyrhizobium japonicum E109, one of the most agronomically used nitrogen-fixing rhizobacteria in Argentina. Genome Announcements, 2015, 3(1): e01566-14.
[15]
SIQUEIRA A F, ORMENO-ORRILLO E, SOUZA R C, RODRIGUES E P, ALMEIDA L G P, BARCELLOS F G, BATISTA J S S, NAKATANI A S, MARTINEZ-ROMERO E, VASCONCELOS A T R, HUNGRIA M. Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: Elite model strains for understanding symbiotic performance with soybean. BMC Genomics, 2014, 15: 420.

doi: 10.1186/1471-2164-15-420
[16]
AZEVEDO H, LOPES F M, SILLA P R, HUNGRIA M. A database for the taxonomic and phylogenetic identification of the genus Bradyrhizobium using multilocus sequence analysis. BMC Genomics, 2015, 16(Suppl. 5): 10.

doi: 10.1186/s12864-014-1210-9
[17]
KALITA M, MALEK W. Root nodules of Genista germanica harbor Bradyrhizobium and Rhizobium bacteria exchanging nodC and nodZ genes. Systematic and Applied Microbiology, 2020, 43: 126026.

doi: 10.1016/j.syapm.2019.126026
[18]
KALITA M, MALEK W. Molecular phylogeny of Bradyrhizobium bacteria isolated from root nodules of tribe Genisteae plants growing in southeast Poland. Systematic and Applied Microbiology, 2017, 40(8): 482-491.

doi: 10.1016/j.syapm.2017.09.001
[19]
VOS M, QUINCE C, PIJL A S, HOLLANDER M, KOWALCHUK G A. A comparison of rpoB and 16S rRNA as markers in pyrosequencing studies of bacterial diversity. PLoS ONE, 2012, 7(2): e30600.

doi: 10.1371/journal.pone.0030600
[20]
KANEKO T, NAKAMURA Y, SATO S, MINAMISAWA K, UCHIUMI T, SASAMOTO S, WATANABE A, IDESAWA K, IRIGUCHI M, KAWASHIMA K, et al. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Research, 2002, 9(6): 189-197.

doi: 10.1093/dnares/9.6.189
[21]
DELAMUTA J R, RIBEIRO R A, ORMENO-ORRILLO E, MELO I S, MARTINEZ-ROMERO E, HUNGRIA M. Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(9): 3342-3351.

doi: 10.1099/ijs.0.049130-0
[22]
ZHU S Z, GONG C Y, SONG D W, GAO S H, ZHENG G J. Discovery of a novel (+)-γ-lactamase from Bradyrhizobium japonicum USDA 6 by rational genome mining. Applied and Environmental Microbiology, 2012, 78(20): 7492-7495.

doi: 10.1128/AEM.01398-12
[23]
NAROZNA D, PUDELKO K, KROLICZAK J, GOLINSKA B, SUGAWARA M, MADRZAK C, SADOWSKY M. Survival and competitiveness of Bradyrhizobium japonicum strains 20 years after introduction into field locations in Poland. Applied and Environmental Microbiology, 2015, 81(16): 5552-5559.

doi: 10.1128/AEM.01399-15
[24]
ITURRALDE E T, COVELLI J M, ALVAREZ F, PEREZ-GIMENEZ J, ARRESE-IGOR C, LODEIRO A R. Soybean-nodulating strains with low intrinsic competitiveness for nodulation, good symbiotic performance, and stress-tolerance isolated from soybean-cropped soils in Argentina. Frontiers in Microbiology, 2019, 10: 1061.

doi: 10.3389/fmicb.2019.01061 pmid: 31139173
[25]
XING P F, ZHAO Y B, GUAN D W, LI L, ZHAO B S, MA M C, JIANG X, TIAN C F, CAO F M, LI J. Effects of Bradyrhizobium co-inoculated with Bacillus and Paenibacillus on the structure and functional genes of soybean rhizobacteria community. Genes, 2022, 13: 1922.

doi: 10.3390/genes13111922
[26]
全紫曼, 陈远学, 刘明, 彭丹, 蒋帆, 周元, 邹兰, 徐开未. 成都平原蚕豆高效根瘤菌的筛选及其促生功能初步评价. 植物营养与肥料学报, 2019, 25(6): 943-952.
QUAN Z M, CHEN Y X, LIU M, PENG D, JIANG F, ZHOU Y, ZOU L, XU K W. Screening of high efficiency symbiotic rhizobia to faba bean and a preliminary investigation on their promotion ability in Chengdu Plain. Journal of Plant Nutrition and Fertilizers, 2019, 25(6): 943-952. (in Chinese)
[27]
WANG E T, CHEN W F, TIAN C F, YOUNG J P W, CHEN W X. Working on the taxonomy, biodiversity, ecology and evolution of rhizobia//Ecology and Evolution of Rhizobia. Singapore: Springer, 2019: 251-273.
[28]
ZOU Y P, MASON M G, WANG Y L, WEE E, TURNI C, BLACKALL P J, TRAU M, BOTELLA J R. Nucleic acid purification from plants, animals and microbes in under 30 seconds. PLoS Biology, 2017, 15(11): e2003916.

doi: 10.1371/journal.pbio.2003916
[29]
曹凤明, 沈德龙, 李俊, 关大伟, 姜昕, 李力, 冯瑞华, 杨小红, 陈慧君, 葛一凡. 应用多重PCR鉴定微生物肥料常用芽孢杆菌. 微生物学报, 2008, 48(5): 651-656.
CAO F M, SHEN D L, LI J, GUAN D W, JIANG X, LI L, FENG R H, YANG X H, CHEN H J, GE Y F. Multiplex-PCR approach to identify Bacillus species applied in microbial fertilizers. Acta Microbiologica Sinica, 2008, 48(5): 651-656. (in Chinese)
[30]
SHAMS M, VIAL L, CHAPULLIOT D, NESME X, LAVIRE C. Rapid and accurate species and genomic species identification and exhaustive population diversity assessment of Agrobacterium spp. using recA-based PCR. Systematic and Applied Microbiology, 2013, 36(5): 351-358.
[31]
WU J G, WANG J F, ZHANG X H, ZHANG S S, HU X F, CHEN J S. A gyrB-targeted PCR for rapid identification of Paenibacillus mucilaginosus. Applied Microbiology and Biotechnology, 2010, 87(2): 739-747.

doi: 10.1007/s00253-010-2501-y
[32]
王璇, 马鸣超, 关大伟, 姜昕, 李力, 丁延芹, 李俊. 胶质类芽胞杆菌PCR快速检测方法. 微生物学报, 2011, 51(11): 1485-1493.
WANG X, MA M C, GUAN D W, JIANG X, LI L, DING Y Q, LI J. Rapid identification for Paenibacillus mucilaginosus by PCR. Acta Microbiologica Sinica, 2011, 51(11): 1485-1493. (in Chinese)
[33]
王鹏辉, 姜昕, 马鸣超, 关大伟, 曹凤明, 刘尧, 康耀卫, 李俊. 一株耐干燥大豆根瘤菌菌株的筛选与固氮效果评价. 大豆科学, 2020, 39(1): 90-96.
WANG P H, JIANG X, MA M C, GUAN D W, CAO F M, LIU Y, KANG Y W, LI J. Screening of drought-tolerant soybean Rhizobium and its symbiotic compatibility verification. Soybean Science, 2020, 39(1): 90-96. (in Chinese)
[34]
LIU Y, JIANG X, GUAN D W, ZHOU W, MA M C, ZHAO B S, CAO F M, LI L, LI J. Transcriptional analysis of genes involved in competitive nodulation in Bradyrhizobium diazoefficiens at the presence of soybean root exudates. Scientific Reports, 2017, 7(1): 10946.

doi: 10.1038/s41598-017-11372-0
[35]
AMBROSINI V G, FONTOURA S M V, MORAES R P, TAMAGNO S, CIAMPITTI I A, BAYER C. Soybean yield response to Bradyrhizobium strains in fields with inoculation history in Southern Brazil. Journal of Plant Nutrition, 2019, 42(16): 1941-1951.

doi: 10.1080/01904167.2019.1648680
[36]
陈文新, 汪恩涛. 中国根瘤菌. 北京: 科学出版社, 2011: 114-115.
CHEN W X, WANG E T. Chinese Rhizobia. Beijing: Science Press, 2011: 114-115. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!