Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (17): 3780-3788.doi: 10.3864/j.issn.0578-1752.2021.17.018

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Analysis of Plasmid-Mediated AmpC β-lactamases Gene and Plasmid in Poultry Proteus mirabilis Strains

ZHAO ShiYu1(),JIAO JiaJie1,DONG NingNing1,PAN YuanYue2,CUI MengMei1,PAN YuShan1()   

  1. 1College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002
    2College of Life Sciences, Henan Agricultural University, Zhengzhou 450002
  • Received:2020-08-28 Accepted:2021-01-25 Online:2021-09-01 Published:2021-09-09
  • Contact: YuShan PAN E-mail:zsmzhao@163.com;pylearn21@163.com

Abstract:

【Objective】 The aim of this study was to probe the genotype of AmpC β-lactamases gene and the complete nucleotide sequence of the conjugative plasmid carrying blaCMY-2 in poultry P. mirabilis strains, so as to provide a theoretical basis for the prevent spreading of multidrug-resistant poultry P. mirabilis strains. 【Method】 Twenty-one P. mirabilis strains were characterized for the confirmation of AmpC β-lactamases genes by using three-dimensional test, polymerase chain reaction (PCR) amplification and sequencing. The blaCMY-2-carrying P. mirabilis strains were further evaluated using pulse field gel electrophoresis (PFGE) and conjugation experiments. The complete nucleotide sequence of conjugative plasmid pC12 was determined by using high-throughput sequencing platform and compared with closely related plasmids. 【Result】 Six of twenty-one P. mirabilis strains produced AmpC enzymes, all of which carried the blaCMY-2 gene and the detection rate was 28.6%. Antimicrobial susceptibility testing showed that six P. mirabilis strains exhibited high resistance to ampicillin, cefoxitin, doxycycline, florfenicol and colistin, but were susceptible to ceftazidime and amikacin. Conjugation assay revealed the blaCMY-2 gene was successfully transferred from P. mirabilis C12 to E. coli C600 recipient strain, however, conjugation experiments failed to obtain transconjugants for other blaCMY-2-bearing strains, despite repeated attempts. Three PFGE patterns of six P. mirabilis strains were determined. The findings demonstrated the vertical and horizontal dissemination of blaCMY-2 gene in poultry P. mirabilis isolates. Sequence analysis revealed the P. mirabilis C12 harbored a conjugative plasmid, designated as pC12. pC12 was found to be a multi-drug resistant type 1b IncC plasmid with 161 319-bp size and an average GC content of 52.45%, and had at least 161 predicted open reading frames. The complete sequence of pC12 has been submitted to GenBank with the accession number MT320534. The pC12 harbored three antibiotic resistance regions: the first region, antibiotic resistance island ARI-B, carried floR, tet(A), strA, strB, and sul2 genes; the second region, ISEcp1-blaCMY-2-blc-sugE, was a typical structure, and the ISEcp1 was truncated by IS10R; the third region, ARI-A, was a hybrid Tn1696tnp-pDUmer module. The ARI-A contained a sul1-containing class 1 integron with cassette array (aac(6')-Ib-cr|arr3|dfrA27|aadA16), and a mercury resistance cluster merEDBAPTR, and inserted into the plasmid backbone generating 5-bp direct repeats (TTGTA). 【Conclusion】 All the AmpC-producing P. mirabilis strains carried the blaCMY-2 gene, and one of them harbored an epidemic type 1 IncC conjugative plasmid. Three PFGE patterns were identified. The findings demonstrated the vertical and horizontal dissemination of blaCMY-2 gene in poultry Proteus mirabilis isolates. IncC plasmid was one of the predominant vehicles for the dissemination of multiple resistance genes, such as blaCMY-2, tet (A), floR or class 1 integron cassette, which further increased the difficulty for the treatment of the infection caused by P. mirabilis. More attention should be paid on the epidemiology of IncC plasmid in pathogenic bacteria.

Key words: Proteus mirabilis, IncC plasmid, AmpC β-lactamases, blaCMY-2, Tn1696 transposon

Table 1

Primers for AmpC β-lactamases genes"

引物名称 Primer name 引物方向(5′→3′) Primer sequence (5′→3′) 产物长度 Size (bp) 参考文献 Reference
MOX-F GCTGCTCAAGGAGCACAGGAT 520 [16]
MOX-R CACATTGACATAGGTGTGGTGC [16]
CIT-F TGGCCAGAACTGACAGGCAAA 462 [16]
CIT-R TTTCTCCTGAACGTGGCTGGC [16]
DHA-F AACTTTCACAGGTGTGCTGGGT 405 [16]
DHA-R CCGTACGCATACTGGCTTTGC [16]
ACC-F AACAGCCTCAGCAGCCGGTTA 346 [16]
ACC-R TTCGCCGCAATCATCCCTAGC [16]
EBC-F TCGGTAAAGCCGATGTTGCGG 302 [16]
EBC-R CTTCCACTGCGGCTGCCAGTT [16]
FOX-F AACATGGGGTATCAGGGAGATG 190 [16]
FOX-R CAAAGCGCGTAACCGGATTGG [16]
blaCMY-2-F ATGATGAAAAAATCGTTATGC 1146 本研究 This study
blaCMY-2-R TTATTGCAGCTTTTCAAGAATG 本研究 This study

Table 2

MICs of twelve antimicrobials against six blaCMY-2-carrying Proteus mirabilis strains and the transconjugant TC12 (µg·mL-1)"

抗菌药物
Antimicrobial agents
MICs (µg·mL-1)
菌株 Strains
CY12 CY32 WS2 S31 S52 C12 TC12 E. coli C600 E. coli ATCC 25922
氨苄西林Ampicillin >256 >256 >256 >256 >256 >256 256 4 2
头孢他啶Ceftazidime 8 8 4 4 4 2 2 <0.125 <0.125
头孢噻肟Cefotaxime 4 1 2 2 2 4 4 <0.125 <0.125
头孢西丁Cefoxitin 32 32 64 32 32 32 32 2 2
环丙沙星Ciprofloxacin 4 4 1 8 8 4 <0.125 <0.125 <0.125
恩诺沙星Enrofloxacin 16 16 4 32 32 32 <0.125 <0.125 <0.125
卡那霉素Kanamycin 256 256 2 >256 128 128 64 4 4
阿米卡星Amikacin 4 2 0.5 8 4 1 1 <0.125 <0.125
庆大霉素Gentamycin 8 16 0.25 2 2 64 32 <0.125 <0.125
氟苯尼考Florfenicol >256 256 8 128 128 64 128 2 0.5
多西环素Doxycycline 128 64 128 64 64 64 64 0.25 <0.125
粘菌素Colistin >256 >256 >256 >256 >256 >256 <0.125 <0.125 <0.125

Fig. 1

Pulsed-Field Gel Electrophoresis of six Proteus mirabilis strains carrying blaCMY-2"

Fig. 2

Sequence comparisons of pC12 and other blaCMY-positive IncC plasmids pAR060302 (FJ621588), pSN254 (CP000604), pCVM22425 (CP009560), pSD_174 (JF267651), pUMNK88 (HQ023862), IncA/C-LS6 (JX442976) from P. mirabilis, E. coli, S. enterica, and K. pneumoniae Red arrows represent genes coding for antibiotic resistance or mercury resistance; yellow arrows represent genes coding for insertion sequence elements or transposase; cyan arrows represent genes coding for conjugal transfer; orange arrows represent genes coding for maintenance and stability; gray arrows represent genes coding for hypothetical proteins. Homologous segments generated by a BLASTn comparison (≥94% identity of nucleotide sequence) are shown as grey boxes"

[1] RÓZALSKI A, SIDORCZYK Z, KOTEŁKO K. Potential virulence factors of Proteus bacilli. Microbiology and Molecular Biology Reviews, 1997, 61(1): 65-89.
[2] MATA C, NAVARRO F, MIRÓ E, WALSH T R, MIRELIS B, TOLEMAN M. Prevalence of SXT/R391-like integrative and conjugative elements carrying blaCMY-2 in Proteus mirabilis. The Journal of Antimicrobial Chemotherapy, 2011, 66(10): 2266-2270.
doi: 10.1093/jac/dkr286
[3] 潘玉善, 苑丽, 吴华, 刘建华, 刘珍珍, 赵宜双, 胡功政. 禽源奇异变形杆菌超广谱β-内酰胺酶基因的分子特征. 中国农业科学, 2013(7): 1463-1469.
PAN Y S, YUAN L, WU H, LIU J H, LIU Z Z, ZHAO Y S, HU G Z. Molecular characteristics of extended-spectrum β-lactamases in clinical isolates of Proteus mirabilis from poultry. Scientia Agricultura Sinica, 2013(7): 1463-1469.(in Chinese)
[4] 杨睿, 王婷婷, 王孝友, 余远迪, 张邑凡, 付利芝. 腹泻仔猪中奇异变形杆菌分离鉴定与耐药基因分析. 中国兽医学报, 2019(11): 2146-2151.
YANG R, WANG T T, WANG X Y, YU Y D, ZHANG Y F, FU L Z. Isolation, identification and analysis of antibiotic resistance genes of Proteus mirabilis in piglets with diarrhea. Chinese Journal of Veterinary Science, 2019(11): 2146-2151.(in Chinese)
[5] 王道宁, 孔令聪, 董文龙, 刘树明, 高云航, 马红霞, 栾维民. 犬源奇异变形杆菌的分离鉴定及生物学特性分析. 黑龙江畜牧兽医, 2020(1): 72-76, 154.
WANG D N, KONG L C, DONG W L, LIU S M, GAO Y H, MA H X, LUAN W M. Isolation identification and biological characteristics of Proteus mirabilis of canine. Heilongjiang Animal Science and Veterinary Medicine, 2020(1): 72-76, 154.(in Chinese)
[6] 路佳琦, 张荣民, 程珂, 何冰, 廖晓萍, 孙坚, 刘雅红, 方亮星. 鸽源奇异变形杆菌中磷霉素耐药基因fosA3的流行与传播特征. 中国兽医学报, 2020, 40(2): 303-310.
LU J Q, ZHANG R M, CHENG K, HE B, LIAO X P, SUN J, LIU Y H, FANG L X. Prevalence and dissemination of fosA3 gene in Proteus mirabilis isolates from a pigeon field. Chinese Journal of Veterinary Science, 2020, 40(2): 303-310.(in Chinese)
[7] 袁东芳. 肉鸡养殖中奇异变形杆菌的分离鉴定及其16S rRNA基因序列分析. 山东畜牧兽医, 2020(6): 7-9.
YUAN D F. Isolation, identification and analysis of 16S rRNA of Proteus mirabilis isolated from Chicken. Shandong Journal of Animal Science and Veterinary Medicine, 2020(6): 7-9.(in Chinese)
[8] 刘英其. 奇异变形杆菌β-内酰胺酶检测及耐药性分析. 中国微生态学杂志, 2015, 27(10): 1195-1198.
LIU Y Q. Analysis of resistance to antibiotics and detection of inducible β-lactamase produced in Proteus mirabilis. Chinese Journal of Microecology, 2015, 27(10): 1195-1198.(in Chinese)
[9] 年华, 褚云卓, 田素飞, 郭丽洁, 丁丽萍. 奇异变形杆菌耐药性变迁10年连续监测分析. 中国公共卫生, 2012(8): 1130-1132.
NIAN H, CHU Y Z, TIAN S F, GUO L J, DING L P. Continuous monitoring of clinical distribution and drug resistance of Proteus mirabilis. Chinese Journal of Public Health, 2012(8): 1130-1132.(in Chinese)
[10] BUSH K, JACOBY G A, MEDEIROS A A. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrobial Agents and Chemotherapy, 1995, 39: 1211-1233.
doi: 10.1128/AAC.39.6.1211
[11] PHILIPPON A, ARLET G, JACOBY G A. Plasmid-determined AmpC-type β-lactamases. Antimicrobial Agents and Chemotherapy, 2002, 46(1): 1-11.
doi: 10.1128/AAC.46.1.1-11.2002
[12] JACOBY G A. AmpC β-lactamases. Clinical Microbiology Reviews, 2009, 22: 161-182.
doi: 10.1128/CMR.00036-08
[13] LEI C W, ZHANG A Y, WANG H N, LIU B H, YANG L Q, YANG Y Q. Characterization of SXT/R391 integrative and conjugative elements in Proteus mirabilis isolates from food-producing animals in China. Antimicrobial Agents and Chemotherapy, 2016, 60(3): 1935-1938.
doi: 10.1128/AAC.02852-15
[14] COUDRON P E, MOLAND E S, THOMSON K S. Occurrence and detection of AmpC β-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans medical center. Journal of Clinical Microbiology, 2000, 38(5): 1791-1796.
doi: 10.1128/JCM.38.5.1791-1796.2000
[15] Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing, twenty-seventh. Wayne, PA, USA, 2017, M100-S27.
[16] PÉREZ-PÉREZ F J, HANSON N D. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. Journal of Clinical Microbiology, 2002, 40(6): 2153-2162.
doi: 10.1128/JCM.40.6.2153-2162.2002
[17] 邓志爱, 张汉斌, 李孝权, 张欣强, 黄燕, 陈守义. 脉冲场凝胶电泳分型应用于奇异变形杆菌食源性疾病的溯源. 中国卫生检验杂志, 2010(8): 1938-1939, 1941.
DENG Z A, ZHANG H B, LI X Q, ZHANG X Q, HUANG Y, CHEN S Y. Application of pulse-field gel electrophoresis analysis (PFGE) in the source-tracking of food-borne disease caused by Proteus mirabilis. Chinese Journal of Health Laboratory Technology, 2010(8): 1938-1939, 1941.(in Chinese)
[18] KOREN S, SCHATZ M C, WALENZ B P, MARTIN J, HOWARD J T, GANAPATHY G, WANG Z, RASKO D A, MCCOMBIE W R, JARVIS E D, PHILLIPPY A M. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nature Biotechnology, 2012, 30(7): 693-700.
doi: 10.1038/nbt.2280
[19] 冯福英, 杨湘越, 洪宇, 郑宗富, 张薇, 蒋际城, 曾琦. 20株奇异变形杆菌耐药基因和整合子分布及亲缘关系分析. 国际检验医学杂志, 2015, 36(17): 2461-2463.
FENG F Y, YANG X Y, HONG Y, ZHENG Z F, ZHANG W, JIANG J C, ZENG Q. Study on distribution of drug resistance gene and integron and analysis of genetic relationship of 20 isolates of Proteus mirabilis. International Journal of Laboratory Medicine, 2015, 36(17): 2461-2463.(in Chinese)
[20] BARLOW M, HALL B G. Origin and evolution of the AmpC β-lactamases of Citrobacter freundii. Antimicrobial Agents and Chemotherapy, 2002, 46: 1190-1198.
doi: 10.1128/AAC.46.5.1190-1198.2002
[21] BAUERNFEIND A, STEMPLINGER I, JUNGWIRTH R, GIAMARELLOU H. Characterization of the plasmidic β-lactamase CMY-2, which is responsible for cephamycin resistance. Antimicrobial Agents and Chemotherapy, 1996, 40: 221-224.
doi: 10.1128/AAC.40.1.221
[22] FOSBERRY A P, PAYNE D J, LAWLOR E J, HODGSON J E. Cloning and sequence analysis of blaBIL-1, a plasmid-mediated class C β-lactamase gene in Escherichia coli BS. Antimicrobial Agents and Chemotherapy, 1994, 38: 1182-1185.
doi: 10.1128/AAC.38.5.1182
[23] GUO Y F, ZHANG W H, REN S Q, YANG L, LU D H, ZENG Z L, LIU Y H, JIANG H X. IncA/C plasmid-mediated spread of CMY-2 in multidrug-resistant Escherichia coli from food animals in China. PLoS ONE, 2014, 9: e96738.
doi: 10.1371/journal.pone.0096738
[24] MATA C, MIRO E, ALVARADO A, GARCILLAN-BARCIA M P, TOLEMAN M, WALSH T R, DE LA CRUZ F, NAVARRO F. Plasmid typing and genetic context of AmpC β-lactamases in Enterobacteriaceae lacking inducible chromosomal ampC genes: Findings from a Spanish hospital 1999-2007. Journal of Antimicrobial Chemotherapy, 2012, 67: 115-122.
doi: 10.1093/jac/dkr412
[25] ABERKANE S, COMPAIN F, DECRÉ D, DUPONT C, LAURENS C, VITTECOQ M, PANTEL A, SOLASSOL J, CARRIÈRE C, RENAUD F, BRIEU N, LAVIGNE J P, BOUZINBI N, OUÉDRAOGO A S, JEAN- PIERRE H, GODREUIL S. High prevalence of SXT/R391-related integrative and conjugative elements carrying blaCMY-2 in Proteus mirabilis isolates from gulls in the south of France. Antimicrobial Agents and Chemotherapy, 2016, 60(2): 1148-1152.
doi: 10.1128/AAC.01654-15
[26] HARMER C J, HALL R M. The A to Z of A/C plasmids. Plasmid, 2015, 80: 63-82.
doi: 10.1016/j.plasmid.2015.04.003
[27] AMBROSE S J, HARMER C J, HALL R M. Compatibility and entry exclusion of IncA and IncC plasmids revisited: IncA and IncC plasmids are compatible. Plasmid, 2018, 96-97: 7-12.
doi: 10.1016/j.plasmid.2018.02.002
[28] HARMER C J, HALL R M. pRMH760, a precursor of A/C2 plasmids carrying blaCMY and blaNDM genes. Microbial Drug Resistance, 2014, 20(5): 416-423.
doi: 10.1089/mdr.2014.0012
[29] VILLA L, GUERRA B, SCHMOGER S, FISCHER J, HELMUTH R, ZONG Z, GARCÍA-FERNÁNDEZ A, CARATTOLI A. IncA/C plasmid carrying bla(NDM-1), bla(CMY-16), and fosA3 in a Salmonella enterica serovar corvallis strain isolated from a migratory wild bird in Germany. Antimicrobial Agents and Chemotherapy, 2015, 59(10): 6597-6600.
doi: 10.1128/AAC.00944-15
[30] AMBROSE S J, HARMER C J, HALL R M. Evolution and typing of IncC plasmids contributing to antibiotic resistance in Gram-negative bacteria. Plasmid, 2018, 99: 40-55.
doi: 10.1016/j.plasmid.2018.08.001
[31] CHENG Q, JIANG X, XU Y, HU L, LUO W, YIN Z, GAO H, YANG W, YANG H, ZHAO Y, ZHAO X, ZHOU D, DAI E. Type 1, 2, and 1/2-hybrid IncC plasmids from China. Frontiers in Microbiology, 2019, 10: 2508.
doi: 10.3389/fmicb.2019.02508
[32] HARMER C J, HALL R M. Evolution in situ of ARI-A in PB2-1, a type 1 IncC plasmid recovered from Klebsiella pneumoniae, and stability of Tn4352B. Plasmid, 2017, 94: 7-14.
doi: 10.1016/j.plasmid.2017.10.001
[33] VERDET C, GAUTIER V, CHACHATY E, RONCO E, HIDRI N, DECRÉ D, ARLET G. Genetic context of plasmid-carried blaCMY-2- like genes in Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 2009, 53(9): 4002-4006.
doi: 10.1128/AAC.00753-08
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!