Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (16): 3257-3268.doi: 10.3864/j.issn.0578-1752.2020.16.005
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles Next Articles
SHAO ZeZhong1(),YAO Qing1(),TANG Jian2(),LI HanQiong3,YANG BaoJun2,LÜ Jun1,CHEN Yi4
[1] | 刘德营. 稻飞虱自动识别关键技术的研究[D]. 南京: 南京农业大学, 2011. |
LIU D Y. Study on automatic identification technology for rice plant hoppers[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese) | |
[2] | 吴翔. 基于机器视觉的害虫识别方法研究[D]. 杭州: 浙江大学, 2016. |
WU X. Study on identification of pests based on machine vision[D]. Hangzhou: Zhejiang University, 2016. (in Chinese) | |
[3] | 杨慧勇, 高灵旺, 牛国飞, 乔建, 刘伟, 邢鲲, 王鑫, 李捷. 农业害虫远程自动识别诊断系统应用技术研究. 山西农业科学, 2010,38(6):40-42. |
YANG H Y, GAO L W, NIU G F, QIAO J, LIU W, XING K, WANG X, LI J. Technology research of agricultural pests remote automatic diagnosis system. Journal of Shanxi Agricultural Sciences, 2010,38(6):40-42. (in Chinese) | |
[4] | HAN Y Q, SHAN X, ZHU D. Design and implementation of locust data collecting system based on android. Advances in Computer Science and Education Applications, 2011,2:328-337. |
[5] | 张谷丰, 罗岗, 孙雪梅. 基于Android的水稻害虫诊断系统. 应用昆虫学报, 2015,4:837-843. |
ZHANG G F, LUO G, SUN X M. An android, mobile phone-based identification system for rice insects. Chinese Journal of Applied Entomology, 2015,4:837-843. (in Chinese) | |
[6] | 朱莉, 罗靖, 徐胜勇, 杨勇, 赵海涛, 李卫豪. 基于颜色特征的油菜害虫机器视觉诊断研究. 农机化研究, 2016,38(6):55-58. |
ZHU L, LUO J, XU S Y, YANG Y, ZHAO H T, LI W H. Machine vision recognition of rapeseed pests based on color feature. Journal of Agricultural Mechanization Research, 2016,38(6):55-58. (in Chinese) | |
[7] | 王德发. 基于图像识别的储粮害虫检测[D]. 北京: 北京邮电大学, 2017. |
WANG D F. Detection of stored grain pests based on image recognition. Beijing: Beijing University of Posts and Telecommunications, 2017. (in Chinese) | |
[8] | WEN C, GUYER D. Image-based orchard insect automated identification and classification method. Computers and Electronics in Agriculture, 2012,89:110-115. |
[9] |
JUAN Z, XIAO P C. Field pest identification by an improved Gabor texture segmentation scheme. New Zealand Journal of Agricultural Research, 2007,50(5):719-723.
doi: 10.1080/00288230709510343 |
[10] | 程鲁玉, 孟小艳, 达新民. 关于果林中果害虫图像特征高效分类识别仿真. 计算机仿真, 2018,35(2):425-428. |
CHENG L Y, MENG X Y, DA X M. Simulation of efficient classification for image characteristics of fruit in fruit pest. Computer Simulation, 2018,35(2):425-428. (in Chinese) | |
[11] | WEN C, GUYER D E, LI W. Local feature-based identification and classification for orchard insects. Biosystems Engineering, 2009,104(3):299-307. |
[12] | LIU T, CHEN W, WU W, SUN C, GUO W, ZHU X. Detection of aphids in wheat fields using a computer vision technique. Biosystems Engineering, 2016,141:82-93. |
[13] | QING Y, XIAN D, LIU Q, YANG B, DIAO G, TANG J. Automated counting of rice planthoppers in paddy fields based on image processing. Journal of Integrative Agriculture, 2014,13(8):1736-1745. |
[14] | LARIOS N, DENG H, ZHANG W, SARPOLA M, YUEN J, PAASCH R, MOLDENKE A, LYTLE D, CORREA S, MORTENSEN E, SHAPIRO L, DIETTERICH T. Automated insect identification through concatenated histograms of local appearance features: Feature vector generation and region detection fordeformable objects. Machine Vision and Applications, 2008,19(2):105-123. |
[15] | 胡永强, 宋良图, 张洁, 谢成军, 李瑞. 基于稀疏表示的多特征融合害虫图像识别. 模式识别与人工智能, 2014,27(11):985-992. |
HU Y Q, SONG L T, ZHANG J, XIE C J, LI R. Pest image recognition of multi-feature fusion based on sparse representation. Pattern Recognition and Artificial Intelligence, 2014,27(11):985-992. (in Chinese) | |
[16] | WEN C, WU D, HU H, PAN W. Pose estimation-dependent identification method for field moth images using deep learning architecture. Biosystems Engineering, 2015,136:117-128. |
[17] |
ESPINOZA K, VALERA D L, TORRES J A, LÓPEZ A, MOLINA-AIZ F. Combination of image processing and artificial neural networks as a novel approach for the identification of Bemisia tabaci and Frankliniellaoccidentalis on sticky traps in greenhouse agriculture. Computers and Electronics in Agriculture, 2016,127:495-505.
doi: 10.1016/j.compag.2016.07.008 |
[18] | 周曼, 周明全. 基于BP神经网络的水稻害虫自动识别. 北京师范大学学报(自然科学版), 2008,44(2):165-167. |
ZHOU M, ZHOU M Q. Automatic rice pest insects recognition based on bp neural network. Journal of Beijing Normal University(Natural Science), 2008,44(2):165-167. (in Chinese) | |
[19] |
XIE C, ZHANG J, LI R, LI J, HONG P, XIA J, CHEN P. Automatic classification for field crop insects via multiple-task sparse representation and multiple-kernel learning. Computers and Electronics in Agriculture, 2015,119:123-132.
doi: 10.1016/j.compag.2015.10.015 |
[20] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe,America, 2012: 1097-1105. |
[21] |
LIU Z, GAO J, YANG G, ZHANG H, HE Y. Localization and classification of paddy field pests using a saliency map and deep convolutional neural network. Scientific Reports, 2016,6:1-12.
pmid: 28442746 |
[22] | DING W, TAYLOR G. Automatic moth detection from trap images for pest management. Computers & Electronics in Agriculture, 2016,123:17-28. |
[23] | 陈娟, 陈良勇, 王生生, 赵慧颖, 温长吉. 基于改进残差网络的园林害虫图像识别. 农业机械学报, 2019,50(5):187-195. |
CHEN J, CHEN L Y, WANG S S, ZHAO H Y, WEN C J. Pest image recognition of garden based on improved residual network. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(5):187-195. (in Chinese) | |
[24] |
CHENG X, ZHANG Y, CHEN Y, WU Y, YUE Y. Pest identification via deep residual learning in complex background. Computers and Electronics in Agriculture, 2017,141:351-356.
doi: 10.1016/j.compag.2017.08.005 |
[25] | XIA D, CHEN P, WANG B, ZHANG J, XIE C. Insect detection and classification based on an improved convolutional neural network. Sensors, 2018,18(12):1-12. |
[26] | LIU L, WANG R, XIE C, WANG F. PestNet: An end-to-end deep learning approach for large-scale multi-class pest detection and classification. IEEE Access, 2019,7:45301-45312. |
[27] | ALFARISY A A, CHEN Q, GUO M. Deep learning based classification for paddy pests & diseases recognition. Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence. Chengdu,China, 2018: 21-25. |
[28] | 沙小梅, 张路正. 识花软件在花卉栽培与室内装饰课程教学中的应用——以形色(赏花识花APP)为例. 课程教育研究, 2018,37:227. |
SHAO X M, ZHANG L Z. Application of flower recognition software in flower cultivation and interior decoration course teaching--take xingse(identifying flowers app) for example. Course Education Research, 2018,37:227. (in Chinese) | |
[29] | 王桢, 何建勇. 花伴侣:把“植物大百科”装进小口袋. 绿化与生活, 2017,10:30-31. |
WANG Z, HE J Y. Flower companion: Put "encyclopedia of plants" in your pocket. Greening and Life, 2017,10:30-31. (in Chinese) | |
[30] | 樊景超. 基于MobileNets的果园害虫分类识别模型研究. 天津农业科学, 2018,24(9):11-13. |
FAN J C. Study on classification and recognition of orchard pests based on mobile nets. Tianjin Agricultural Sciences, 2018,24(9):11-13. (in Chinese) | |
[31] | 赵彬宇, 周慧玲, 李江涛, 严晓平, 韩康榕. 储粮害虫智能图鉴及图像识别APP软件设计. 粮食储藏, 2019,48(3):42-46. |
ZHAO B Y, ZHOU H L, LI J T, YAN X P, HAN K R. Mobile app design for stored grain insect illustration guide and image recognition. Grain Storage, 2019,48(3):42-46. (in Chinese) | |
[32] |
SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning. Journal of Big Data, 2019,6(1):1-48.
doi: 10.1186/s40537-018-0162-3 |
[33] | HOU J, SU H Y, YAN B, ZHENG H, SUN Z, CAI X. Classification of tongue color based on CNN. Proceedings of IEEE 2nd International Conference on Big Data Analysis.Beijing,China, 2017: 725-729 . |
[34] |
DENG L M, WANG Y J, HAN Z Z, YU R R. Research on insect pest image detection and recognition based on bio-inspired methods. Biosystems Engineering, 2018,169:139-148.
doi: 10.1016/j.biosystemseng.2018.02.008 |
[35] | SZEGEDY C, LIU W, JIA Y, SERMANET P, REED S, ANGUELOV D, ERHAN D, VANHOUCKE V, RABINOVICH A. Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition, Boston. USA, 2015: 1-9. |
[36] |
WU Z, SHEN C, VAN DEN HENGEL A. Wider or deeper: Revisiting the resnet model for visual recognition. Pattern Recognition, 2019,90:119-133.
doi: 10.1016/j.patcog.2019.01.006 |
[37] | HUANG G, LIU Z, VAN DER MAATEN L, KILIAN Q. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, Ameriaca, 2017: 4700-4708. |
[38] | 杨婧, 耿辰, 王海林, 纪建松, 戴亚康. 基于DenseNet的低分辨CT影像肺腺癌组织学亚型分类. 浙江大学学报(工学版), 2019,53(6):1164-1170. |
YANG J, GENG C, WANG H L, JI J S, DAI Y K. Classification on histological subtypes of lung adenocarcinoma from low-resolution CT images based on DenseNet. Journal of Zhejiang University (Engineering Science), 2019,53(6):1164-1170. (in Chinese) | |
[39] | ZHU Y, NEWSAM S. Densenet for dense flow. 2017 IEEE International Conference on Image Processing. Beijing,China, 2017: 790-794. |
[40] | 唐明轩. 基于DenseNet的医学图像分割研究与应用[D]. 成都: 成都信息工程大学, 2018. |
TANG M X. Research and application of medical image segmentation based on densenet[D]. Chengdu: ChengDu University of Information Engineering, 2018. (in Chinese) | |
[41] |
RUSSAKOVSKY O, DENG J, SU H, KRAUSE J, SATHEESH S, MA S, HUANG Z, KARPATHY S, KHOSLA A, BERNSTEIN M, BERG A, LI F F. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 2015,115(3):211-252.
doi: 10.1007/s11263-015-0816-y |
[42] | RAVISHANKAR H, SUDHAKAR P, VENKATARAMANI R, THIRUVENKADAM S, ANNANGI P, BABU N, VAIDYA V. Understanding the mechanisms of deep transfer learning for medical images. Deep Learning and Data Labeling for Medical Applications. Springer, 2016: 188-196. |
[43] |
KE H, CHEN D, LI X, TANG Y, SHAH T, RANJAN R. Towards brain big data classification: Epileptic EEG identification with a lightweight VGGNet on global MIC. IEEE Access, 2018,6:14722-14733.
doi: 10.1109/ACCESS.2018.2810882 |
[44] | SZEGEDY C, VANHOUCKE V, IOFFE S, SHLENS J, WOJNA Z. Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,USA, 2016: 2818-2826. |
[45] | HE K, ZHANG X, REN S, SUN J. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,USA, 2016: 770-778. |
[1] | LIU QingFei, ZHANG HongLi, WANG YanLing. Real-Time Pixel-Wise Classification of Agricultural Images Based on Depth-Wise Separable Convolution [J]. Scientia Agricultura Sinica, 2018, 51(19): 3673-3682. |
|