Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (23): 4320-4321.doi: 10.3864/j.issn.0578-1752.2019.23.012

• SPECIAL FOCUS: MOLECULAR BIOLOGY OF APPLE • Previous Articles     Next Articles

Strengthen the Research of Molecular Biology, Promote the Sustainable Development of Apple Industry

CONG PeiHua,ZHANG CaiXia,HAN XiaoLei,ZHANG LiYi   

  1. Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Fruit Germplasm Resources Utilization, Ministry of Agriculture/National Apple Breeding Center, Xingcheng 125100, Liaoning
  • Received:2019-11-22 Accepted:2019-11-29 Online:2019-12-01 Published:2019-12-01
[1] VELASCO R, ZHARKIKH A, AFFOURTIT J, DHINGRA A, CESTARO A, KALYANARAMAN A, FONTANA P, SATISH K B, TROGGIO M, PRUSS D ,et al. The genome of the domesticated apple (Malus×domestica Borkh.). Nature Genetics, 2010,42(10):833-839.
doi: 10.1038/ng.654 pmid: 20802477
[2] LI X W, KUI L, ZHANG J, XIE Y P, WANG L P, YAN Y, WANG N, XU J D, LI C Y, WANG W, VAN NOCKER S, DONG Y, MA F W, GUAN Q M . Improved hybrid de novo genome assembly of domesticated apple (Malus×domestica). GigaScience, 2016,5(1):35.
doi: 10.1186/s13742-016-0139-0 pmid: 27503335
[3] DACCORD N, CELTON J M, LINSMITH G, BECKER C, CHOISNE N, SCHIJLEN E, GEEST H, BIANCO L, MICHELETTI D, VELASCO R, PIERRO A D, GOUZY J, REES D J G, GUÉRIF P, MURANTY H, DUREL C E, LAURENS F, LESPINASSE Y, GAILLARD S, AUBOURG S, QUESNEVILLE H, WEIGEL D, WEG E, TROGGIO M, BUCHER E . High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics, 2017,49(7):1099-1106.
doi: 10.1038/ng.3886 pmid: 28581499
[4] ZHANG L Y, HU J, HAN X L, LI J J, GAO Y, RICHARDS C M, ZHANG C X, TIAN Y, LIU G M, GUL H, WANG D J, TIAN Y, YANG C X, MENG M H, YUAN G P, KANG G D, WU Y L, WANG K, ZHANG H T, WANG D P, CONG P H . A high-quality apple genome assembly reveals a retrotransposon controlling red fruit colour. Nature Communications, 2019,10(1):1494.
doi: 10.1038/s41467-019-09518-x pmid: 30940818
[5] DUAN N B, BAI Y, SUN H H, WANG N, MA Y M, LI M J, WANG X, JIAO C, NOAH L, MAO L Y, WAN S B, WANG K, HE T M, FENG S Q, ZHANG Z Y, MAO Z Q, SHEN X, CHEN X L, JIANG Y M, WU S J, YIN C M, GE S F, YANG L, FEI Z J, CHEN X S . Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nature Communications, 2017(8):249.
doi: 10.1038/s41467-017-00336-7 pmid: 28811498
[6] PEACE C, BIANCO L, TROGGIO M, VAN DE WEG E, HOWARD N P, CORNILLE A, DUREL C E, MYLES S, MIGICOVSKY Z, SCHAFFER R J, COSTES E, FAZIO G, YAMANE H, VAN NOCKER S, GOTTSCHALK C, COSTA F, CHAGNE D, ZHANG X Z, PATOCCHI A, GARDINER S E, HARDNER C, KUMAR S, LAURENS F, BUCHER E, MAIN D, JUNG S, VANDERZANDE S . Apple whole genome sequences: Recent advances and new prospects. Horticulture Research, 2019,6(1):59.
doi: 10.1038/s41438-019-0141-7 pmid: 30962944
[7] 李兴亮, 丁宁, 贾美茹, 魏灵芝, 姜金铸, 李冰冰, 贾文锁 . 苹果果实愈伤转化体系的建立及其在基因功能研究中的应用. 中国农业大学学报, 2015,20(2):108-113.
LI X L, DING N, JIA M R, WEI L Z, JIANG J Z, LI B B, JIA W S . Establishment of gene transformation system in fruit callus and its application in gene functional analysis for apple plant. Journal of China Agricultural University, 2015,20(2):108-113. (in Chinese)
[8] 梁美霞, 乔绪强, 郭笑彤, 张洪霞 . 柱型苹果生长特性及Co基因定位研究进展. 中国农业科学, 2017,50(22):4421-4430.
doi: 10.3864/j.issn.0578-1752.2017.22.018
LIANG M X, QIAO X Q, GUO X T, ZHANG H X . Research progresses in mechanisms of growth habits and Co gene mapping of columnar apple (Malus domestica × Borkh.). Scientia Agricultura Sinica, 2017,50(22):4421-4430. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.22.018
[9] YANAGISAWA S . Transcription factors involved in controlling the expression of nitrate reductase genes in higher plants. Plant Science, 2014,229:167-171.
doi: 10.1016/j.plantsci.2014.09.006
[10] EVANS K. The apple genome-harbinger of innovation for sustainable apple production, in achieving sustainable cultivation of apples. Burleigh Dodds Science Publishing Limited, Cambridge, 2017.
[11] FENG Z Y, ZHANG B T, DING W N, LIU X D, YANG D L, WEI P L, CAO F Q, ZHU S H, ZHANG F, MAO Y F, ZHU J K . Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 2013,23:1229-1232.
doi: 10.1038/cr.2013.114 pmid: 23958582
[12] LIU X J, XIE C X, SI H J, YANG J X . CRISPR/Cas9-mediated genome editing in plants. Methods, 2017,121/122:94-102.
doi: 10.1016/j.ymeth.2017.03.009 pmid: 28315486
[13] XING H L, DONG L, WANG Z P, ZHANG H Y, HAN C Y, LIU B, WANG X C, CHEN Q J . A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology, 2014,14(1):327.
doi: 10.1007/978-1-4939-6859-6_25 pmid: 28220435
[14] 霍晋彦, 李姣, 荆雅峰, 冯宝民, 于宗霞 . CRISPR/Cas9系统在植物基因功能研究中的应用进展. 植物生理学报, 2019,55(3):241-246.
HUO J Y, LI J, JING Y F, FENG B M, YU Z X . Progress on the application of CRISPR/Cas9 system in the functional study of plant genes. Plant Physiology Communications, 2019,55(3):241-246. (in Chinese)
[15] 严芳, 周焕斌 . CRISPR/Cas9技术在植物基因功能研究和新种质创制中的应用与展望. 中国科学: 生命科学, 2016,6(5):498-513.
YAN F, ZHOU H B . Overviews and applications of the CRISPR/Cas9 system in plant functional genomics and creation of new plant germplasm. Scientia Sinica Vitae, 2016,6(5):498-513. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!