Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (20): 3672-3684.doi: 10.3864/j.issn.0578-1752.2019.20.017

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

The Extracellular Enzymes Activity of F1 Generations and Single-spore Isolations in Agrocybe salicacola Strain YAAS711

HuiMing ZHOU1,2,YongChang ZHAO2(),HongMei CHAI2,YanZhen ZHANG1,2   

  1. 1 School of Biotechnology and Engineering, West Yunnan University, Lincang 677000, Yunnan
    2 Institute of Biotechnology and Germplasmic Resource, Yunnan Academy of Agricultural Sciences, Kunming 650205
  • Received:2019-04-08 Accepted:2019-08-03 Online:2019-10-16 Published:2019-10-28
  • Contact: YongChang ZHAO E-mail:yaasmushroom@aliyun.com

Abstract:

【Objective】 The objective of this study was to explore the changes in activities of extracellular enzymes (EEA) of single-spore isolations and its self-crossing individuals from Agrocybe salicacola YAAS711 and to provide evidence for its genetic breeding. 【Method】 Eighteen single-spore monokaryons and 22 dikaryons from self-crossing progeny of A. salicacola YAAS711 were used as the test materials. The activities of CMCase, filter paper cellulase, β-glucanase, hemicellulase, amylase, protease, laccase, polyphenolase and peroxidase of all test strains were determined by 3,5-dinitrosalicylic acid (DNS), Folin methods and guaiacol method, and correlation analysis were carried out between the 9 EEs with mycelial growth rate, polarities and mating factors.【Results】 The results of 9 EEs showed that most of the both monokaryons and dikaryons had higher activities of amylase, filter paper cellulase, hemicellulose, β-glucanase, CMCase and protease, but their activities of peroxidase, polyphenolase and laccase were low. The mycelial growth rate of monokaryons and dikaryons had a certain degree of correlation with the average activity of 9 EEAs. Compared with the dikaryons derived from the combination of “fast-fast” growth rate of monokaryons, the dikaryons derived from the combination of “fast-slow” growth rates of monokaryons had higher EEAs, except hemicellulase, protease and polyphenol oxidase activities. However, there were no rules to follow, when it came to the combination of dikaryons from the cross of type II monokaryons. The indirect effect of polyphenolase on the mycelial growth rate of monokaryons was greater than that of laccase, but the combined effect of laccase on the mycelial growth rate of monokaryons was the largest. The synergistic effect among EEs had little effect on the mycelial growth rate of dikaryons, among them, laccase had the greatest direct effect on its mycelial growth rate. Multiple comparisons showed that the effect of polarity on EEs was greater than that of mating factors at a significant level of 0.05.【Conclusion】 In short, there was a significant correlation between the anomalies of the mycelial growth rate of the monokaryons from same polarity single spore isolations and the EEAs of F1 generations deriverd from these monokaryons in A. salicacola strain YAAS711. The EEAs of type I strains had same rule, but the differences were existed in some type II monokaryons and the dikaryons. There were certain correlation between the growth rate of monokaryons, EEAs and polarity, there were no direct correlation between mating factors and EEAs.

Key words: Agrocybe salicacola, self-crossing F1 generations, extracellular enzyme activity, monokaryon, dikaryon

Table 1

Test strains"

菌株Strain AxBx (F) AyBy (S) AxBy (F) AyBx (F)
单核体
Monokaryotic strain
001、130、173、
185
020、029、032、
071、187
026、034、036、048、
076、163、182
096、186
双核体
Dikaryotic strain
F×F: 001*020、001*032
F×S: 001*029、001*071、001*187
S×S: 071*130、071*173、071*185
F×S: 020*130、020*173、020*185、
032*130、032*173、032*185
F×F: 036*096、036*186、096*034
F×S: 096*026、096*048、096*076、
096*163、096*182

Fig. 1

Standard curve A: Glucose standard curve; B: Xylose standard curve; C: Tyrosine standard curve"

Table 2

The differences of the mycelial growth rate and extracellular enzyme average activities of different monokaryons from A. salicacola strainYAASM711"

单核体
Monokaryon
菌丝生长速度
Mycelial growth rate (cm?d-1)
胞外酶平均活力 Average activity of extracellular enzymes (U)
CMC FP βG HC AM PR LA PPO POD
001 0.30±0.01c 3.20±0.68a 3.89±0.60bcdef 1.55±0.35cde 2.77±0.88bcdef 7.59±0.86a 1.48±0.33abcd 0.77±0.04b 0.27±0.06fg 0.39±0.06a
020 0.39±0.01a 0.10±0.03f 3.43±0.41cdefgh 1.42±0.21cde 3.41±0.37ab 6.28±0.13b 1.21±0.03abcde 0.70±0.02c 0.58±0.03b 0.19±0.03d
026 0.15±0.00e 2.68±0.58ab 3.20±0.46defgh 2.11±0.58bcd 2.57±0.53cdefg 7.80±0.08a 1.50±0.55abc 0.13±0.01fgh 0.34±0.08ef 0.31±0.05ab
029 0.14±0.02e 1.28±0.19de 5.23±1.28ab 1.73±0.23cde 3.04±0.28abcde 2.02±0.26e 0.89±0.11cde 0.07±0.01h 0.10±0.01jk 0.35±0.07a
032 0.34±0.03b 1.92±0.90bcd 4.67±0.12bcd 3.17±1.77ab 3.00±0.38abcde 5.47±0.19c 1.22±0.11abcde 0.69±0.02c 0.61±0.07ab 0.21±0.05cd
034 0.23±0.01d 2.34±0.57abc 2.74±0.67fgh 1.75±0.15cd 2.59±0.47cdefg 4.21±0.43d 1.22±0.18abcde 0.18±0.07ef 0.18±0.05hi 0.36±0.04a
036 0.33±0.01b 2.30±0.56abc 4.42±0.85bcde 3.09±0.73ab 2.40±0.05defg 4.27±0.30d 1.27±0.18abcde 0.06±0.01h 0.42±0.08d 0.31±0.02ab
048 0.15±0.01e 0.15±0.04f 3.54±1.41cdefg 1.48±0.22cde 3.13±0.14abcd 0.95±0.40f 0.81±0.01e 0.15±0.02efg 0.21±0.04ghi 0.35±0.03a
071 0.14±0.01e 2.29±0.12abc 4.75±0.82bc 0.42±0.19e 1.89±0.20g 3.66±0.73d 1.34±0.32abcde 0.11±0.01fgh 0.15±0.02ij 0.35±0.08a
076 0.11±0.01f 0.66±0.56ef 6.18±0.85a 1.35±0.84cde 2.24±0.16efg 1.22±0.50f 0.81±0.04e 0.08±0.01gh 0.23±0.02gh 0.32±0.03ab
096 0.33±0.01b 2.56±0.41ab 1.99±0.83h 3.46±0.86a 2.59±0.69cdefg 5.36±0.12c 1.73±0.85ab 0.87±0.02a 0.31±0.04f 0.36±0.02a
130 0.15±0.01e 1.15±0.56de 3.85±0.44bcdef 1.28±0.52de 3.04±0.20abcde 2.11±0.40e 0.84±0.05de 0.39±0.08d 0.04±0.01k 0.31±0.06ab
163 0.15±0.00e 2.27±0.33abc 2.36±0.97gh 1.65±0.77cde 3.21±0.74abc 0.83±0.35f 0.90±0.07cde 0.11±0.09fgh 0.14±0.03ij 0.34±0.06a
173 0.15±0.00e 2.42±0.20abc 3.16±0.50efgh 1.57±0.95cde 3.62±0.32a 7.66±0.54a 1.16±0.43abcde 0.15±0.01efg 0.50±0.03c 0.30±0.08abc
182 0.13±0.01e 2.64±0.25abc 4.78±0.74bc 2.61±0.37abc 3.66±0.16a 5.12±0.58c 1.13±0.24bcde 0.15±0.01efg 0.40±0.02de 0.34±0.01a
185 0.15±0.00e 0.64±0.07ef 3.46±0.17cdefg 0.91±0.55de 2.02±0.35fg 0.90±0.43f 0.94±0.01cde 0.22±0.07e 0.27±0.03fg 0.31±0.06ab
186 0.35±0.03b 1.53±0.58cde 4.59±0.16bcde 1.52±0.21cde 2.41±0.13cdefg 4.37±0.11d 1.79±0.61a 0.65±0.02c 0.66±0.03a 0.34±0.08a
187 0.15±0.00e 1.23±0.61de 3.54±0.94cdefg 1.45±0.36cde 3.04±0.07abcde 1.96±0.51e 0.88±0.11cde 0.10±0.02gh 0.23±0.01gh 0.32±0.03bcd

Table 3

The differences of the mycelial growth rate and extracellular enzyme average activities of different dikaryons from A. salicacola strainYAASM711"

双核体
Dikaryon
菌丝生长速度
Mycelial growth rate (cm?d-1)
胞外酶平均活力 Average activity of extracellular enzymes (U)
CMC FP βG HC AM PR LA PPO POD
001*020 0.29±0.01g 2.96±0.22bcde 5.13±0.68bcde 3.07±0.22ab 1.61±0.51de 6.00±0.72cdef 1.33±0.26abcd 0.87±0.02b 0.47±0.03cd 0.28±0.02def
001*029 0.32±0.02def 3.53±0.10abcd 4.30±1.21cdefg 3.22±0.93ab 3.31±0.72a 10.09±0.97a 1.18±0.21abcd 1.26±0.09a 0.26±0.02gh 0.48±0.04a
001*032 0.30±0.01fg 0.88±0.64h 4.87±0.20cdef 3.13±0.25ab 3.09±0.40a 6.83±0.31bcd 1.50±0.05abcd 0.74±0.22b 0.42±0.07cde 0.27±0.10def
001*071 0.30±0.03fg 3.85±0.26abc 5.02±0.20bcdef 3.18±0.88ab 3.29±0.55a 6.77±0.40bcd 1.03±0.67bcd 1.36±0.43a 0.23±0.05hi 0.45±0.10ab
001*187 0.35±0.00abc 3.52±0.44abcd 4.25±0.52cdefg 3.23±0.72ab 3.28±0.50a 6.90±0.84bc 1.29±0.30abcd 1.30±0.03a 0.20±0.04hi 0.34±0.03cde
020*130 0.34±0.00bcd 4.54±0.79a 3.44±0.75efgh 1.58±0.42def 1.35±0.36ef 7.85±0.27b 1.62±0.28abcd 1.13±0.03a 0.35±0.11efg 0.27±0.10def
020*173 0.36±0.02ab 2.96±0.51bcde 4.52±0.59cdefg 2.70±0.51bcd 2.95±0.34abc 9.38±0.20a 1.48±0.40abcd 1.22±0.18a 0.27±0.04gh 0.25±0.02defg
020*185 0.33±0.01bcde 4.56±0.66a 6.60±1.24b 3.19±0.60ab 0.45±0.09f 4.98±0.49fgh 1.28±0.31abcd 1.13±0.01a 0.49±0.11c 0.18±0.03fgh
032*130 0.37±0.02a 3.50±0.70abcd 5.98±0.51bc 3.02±0.61abc 1.87±0.59bcde 7.00±0.16bc 1.64±0.93abc 1.23±0.04a 0.28±0.05fgh 0.23±0.04efgh
032*173 0.35±0.01abc 3.00±0.92bcde 4.75±0.44cdefg 3.40±0.87ab 0.88±0.24ef 7.00±0.92bc 1.18±0.36abcd 1.27±0.19a 0.35±0.02efg 0.14±0.01h
032*185 0.35±0.01abc 4.06±0.12ab 2.44±0.93h 1.78±0.16cdef 1.87±0.50cde 5.56±0.55defg 1.52±0.10abcd 1.23±0.02a 0.19±0.02hi 0.24±0.03defgh
071*130 0.22±0.00h 2.63±0.52cde 4.43±0.33cdefg 0.78±0.77f 1.56±0.28de 3.42±0.10i 0.95±0.03cd 0.10±0.01c 0.67±0.04ab 0.32±0.06cde
071*173 0.21±0.01hi 1.49±0.46gh 3.42±0.65efgh 1.43±0.42ef 2.68±0.91abcd 1.23±0.34j 0.86±0.05d 0.06±0.02c 0.59±0.03b 0.35±0.03bcd
071*185 0.21±0.01hi 2.09±0.81ef 4.64±0.84cdefg 0.74±0.09f 1.94±0.25bcde 7.35±0.48bc 0.99±0.17cd 0.09±0.02c 0.74±0.07a 0.35±0.07bcd
036*096 0.23±0.01h 2.61±0.73de 3.96±0.73defgh 2.90±0.39abc 1.99±0.91bcde 4.18±0.53hi 1.89±0.73a 0.70±0.01b 0.38±0.05def 0.16±0.03gh
036*186 0.19±0.01i 2.71±0.30cde 3.33±0.61fgh 2.89±0.87abc 1.52±0.47e 4.63±0.63ghi 1.79±0.10ab 0.71±0.04b 0.38±0.11def 0.28±0.01def
096*026 0.31±0.01efg 3.21±0.71bcde 4.31±0.51cdefg 1.13±0.72ef 1.91±0.96bcde 6.19±0.65cdef 1.16±0.37abcd 1.20±0.06a 0.35±0.04efg 0.14±0.10h
096*034 0.29±0.02g 3.14±1.05bcde 3.04±0.66gh 2.82±0.90abc 3.57±0.08a 4.68±0.56gh 1.70±0.09abc 1.34±0.27a 0.38±0.02def 0.25±0.01defg
096*048 0.30±0.01fg 2.91±0.68bcde 4.64±1.01cdefg 2.30±0.96bcde 2.98±0.67ab 7.15±1.34bc 1.29±0.30abcd 1.21±0.19a 0.22±0.03hi 0.41±0.01abc
096*076 0.31±0.01fg 3.48±0.85abcd 4.19±2.25defg 4.05±0.52a 1.93±0.22bcde 7.26±1.53bc 1.47±0.11abcd 1.22±0.01a 0.14±0.02i 0.31±0.10cde
096*163 0.33±0.03cde 2.84±0.22bcde 8.30±1.48a 3.17±0.44ab 1.99±0.82bcde 6.42±0.79cde 1.35±0.37abcd 1.22±0.08a 0.25±0.09gh 0.41±0.05abc
096*182 0.29±0.00g 3.44±0.70abcd 5.36±0.70bcd 2.86±0.88abc 3.14±0.94a 5.37±0.62efgh 1.39±0.57abcd 1.21±0.06a 0.29±0.02fgh 0.24±0.01defgh

"

项目 Item CMC FP βG HC AM PR LA PPO POD
CMC 1.000
FP -0.226 1.000
βG 0.408 -0.149 1.000
HC -0.007 -0.205 0.224 1.000
AM 0.590** -0.183 0.358 0.220 1.000
PR 0.558* -0.214 0.360 -0.268 0.700** 1.000
LA 0.090 -0.225 0.316 0.043 0.453 0.609** 1.000
PPO 0.038 0.072 0.383 0.179 0.575* 0.531* 0.467 1.000
POD 0.408 -0.080 -0.144 -0.272 -0.197 0.112 -0.225 -0.570* 1.000
菌丝生长速度
Mycelial growth rate (cm?d-1)
0.089 -0.161 0.469* -0.033 0.473* 0.644** 0.785** 0.664** -0.370

Table 5

Path analysis by using mycelial growth rate as dependent variable"

自变量
Independent variable
相关系数
Related
coefficient
直接通径系数
Direct path coefficient
间接通径系数 Indirect path coefficient 决策系数(R2
Decision coefficient
→LA(X7 →PO(X8 间接通径系数总和
Total of Indirect path coefficient
LA(X7 0.785 0.607 0.178 0.178 0.585
PPO(X8 0.664 0.380 0.284 0.284 0.360

Table 6

Correlation coefficients among mycelial growth rate and average activity of extracellular enzymes"

项目 Item CMC FP βG HC AM PR LA PPO POD
CMC 1.000
FP 0.038 1.000
βG 0.189 0.327 1.000
HC -0.256 -0.188 0.135 1.000
AM 0.296 0.172 0.307 0.186 1.000
PR 0.173 -0.176 0.399 -0.041 0.090 1.000
LA 0.649** 0.169 0.612** 0.192 0.549** 0.358 1.000
PPO -0.470* -0.027 -0.617** -0.316 -0.475* -0.406 -0.864** 1.000
POD -0.092 0.129 0.030 0.508* 0.241 -0.407 -0.069 -0.106 1.000
菌丝生长速度
Mycelial growth rate (cm?d-1)
0.554** 0.276 0.416 0.023 0.612** 0.158 0.814** -0.666** -0.134

Table 7

Effects of different polarity on the average activity of extracellular enzymes"

极性 Polarities 胞外酶平均活力 The average activity of extracellular enzymes (U)
CMC FP βG HC AM PR LA PPO POD
AxBx 1.85±0.38a 3.59±0.68a 1.32±0.59b 2.86±0.44a 4.56±0.56ab 1.10±0.21a 0.38±0.15b 0.27±0.03b 0.33±0.07a
AyBy 1.36±0.39a 4.32±0.71a 1.64±0.55ab 2.87±0.26a 3.88±0.36bc 1.11±0.14a 0.33±0.02b 0.33±0.03b 0.28±0.05a
AxBy 1.86±0.50a 3.89±0.85a 2.00±0.52ab 2.83±0.32a 3.49±0.38c 1.09±0.18a 0.12±0.05c 0.27±0.05b 0.28±0.03a
AyBx 2.04±0.50a 3.29±0.50a 2.49±0.54a 2.50±0.41a 4.87±0.12a 1.76±0.73a 0.76±0.02a 0.49±0.04a 0.35±0.05a

Table 8

Effects of different mating factors on the average activity of extracellular enzymes"

交配因子 Mating factor 胞外酶平均活力 The average activity of extracellular enzyme (U)
CM FP βG HC AM PR LA PO PE
Ax 1.86±0.45a 3.78±0.79a 1.76±0.55a 2.84±0.36a 3.88±0.44a 1.09±0.19a 0.22±0.08b 0.27±0.04c 0.67±0.15a
Ay 1.56±0.42a 4.03±0.65a 1.88±0.55a 2.77±0.30a 4.16±0.29a 1.30±0.31a 0.45±0.02a 0.38±0.03a 0.30±0.05b
Bx 1.92±0.42a 3.49±0.62a 1.71±0.57a 2.74±0.43a 4.66±0.41a 1.32±0.38a 0.51±0.11a 0.34±0.03ab 0.34±0.06b
By 1.65±0.45a 4.07±0.79a 1.85±0.54a 2.85±0.30a 3.65±0.37a 1.10±0.16a 0.21±0.03b 0.30±0.04bc 0.31±0.04b
[1] 杨祝良, 臧穆, 刘学系 . 杨柳田头菇—无孔组的一个滇产新种. 云南植物研究, 1993,15(1):18-20.
YANG Z L, ZANG M, LIU X X . Agrocybe salicacola, a new species of sect. aporus from Yunnan, Acta Botanica Yunnanica, 1993,15(1):18-20. (in Chinese)
[2] FAYOD V . Prodrome d'une histoire naturelle des Agaricines. Annales des Sciences Naturelles, Botanique VII, 1889,7(9):181-411.
[3] 臧穆, 杨祝良, 刘学系 . 一种滇产的美味新食菌杨柳田头菇. 中国食用菌, 1991,13(6):8.
ZANG M, YANG Z L, LIU X X . Agrocybe salicacola, a delicious edible mushroom newly discove red from Yunnan. Edible Fungi of China, 1991,13(6):8. (in Chinese)
[4] 金鑫 . 中国广义球盖菇科几个属的分类学研究[D]. 长春: 吉林农业大学, 2012.
JIN X . Studies on taxonomy of several genera of strophariaceae (s. l.) from China[D]. Changchun: Jilin Agricultural University, 2012. ( in Chinese)
[5] 周会明 . 杨柳田头菇生活史及分类地位研究[D]. 昆明: 昆明理工大学, 2011.
ZHOU H M . Studies on the life cycle and classification of Agrocybe salicacola[D]. Kunming: Kunming University of Science and Technology, 2011. ( in Chinese)
[6] 汪欣, 刘平 . 杨柳田头菇引种驯化试验研究. 中国食用菌, 2004,23(2):16-17.
WANG X, LIU P . Studies on domestication of Agrocybe salicacola. Edible Fungi of China, 2004,23(2):16-17. (in Chinese)
[7] LIU L Y, LI Z H, DONG Z J, LI X Y, SU J, LI Y, LIU J K . Two novel fomannosane-type sesquiterpenoids from the culture of the basidiomycete Agrocybe salicacola. Natural Products and Bioprospecting, 2012,2(3):130-132.
[8] LIU L Y, ZHANG L, FENG T, LI Z H, DONG Z J, LI X Y, LIU J K . Unusual illudin-type sesquiterpenoids from cultures of Agrocybe salicacola. Natural Products and Bioprospecting, 2011,1(2):87-92.
[9] ZHU Y C, WANG G, YANG X L, LUO D Q, ZHU Q C, PENG T, LIU J K . Agrocybone, a novel bis-sesquiterpene with a spirodienone structure from basidiomycete Agrocybe salicacola. Tetrahedron Letters, 2010,51(26):3443-3445.
[10] CHEN W M, ZHANG X L, CHAI H M, CHEN L J, LIU W L, ZHAO Y C . Comparative analysis of aporulating and spore-deficient strains of Agrocybe salicacola based on the transcriptome sequences. Current Microbiology, 2015,71(2):204-213.
[11] CHEN W M, CHAI H M, YANG W X, ZHANG X L, CHEN Y H, ZHAO Y C . Characterization of non-coding regions in B mating loci of Agrocybe salicacola groups: target sites for B mating type identification. Current Microbiology, 2017,74(6):772-778.
[12] 周会明, 赵永昌, 陈卫民, 柴红梅, 李树红, 赵静 . 杨柳田头菇交配型因子与菌丝生长速度关系. 云南植物研究, 2010,32(4):315-322.
ZHOU H M, ZHAO Y C, CHEN W M, CHAI H M, LI S H, ZHAO J . The relationship between mating factors with mycelia growth rate of Agrocybe salicacola (Bolbitiaceae). Acta Botanica Yunnanica, 2010,32(4):315-322. (in Chinese)
[13] 周会明, 张小雷, 马美芳, 杨丽芬, 赵永昌 . 田头菇属不同分离菌株杂交研究. 生物技术, 2011,21(1):69-73.
ZHOU H M, ZHANG X L, MA M F, YANG L F, ZHAO Y C . Study on the hybridization for different isolates of genus Agrocybe. Biotechnology, 2011,21(1):69-73. (in Chinese)
[14] 曹春蕾, 崔宝凯, 秦问敏 . 桑木层孔菌液体培养过程中几种胞外酶活性的变化. 菌物学报, 2011,30(2):275-280.
CAO C L, CUI B K, QIN W M . Activity changes of several extracellular enzymes in liquid culture of Phellinus mori. Mycosystema, 2011,30(2):275-280. (in Chinese)
[15] 方宏阳 . 不同颜色的毛木耳菌株生长发育过程及胞外酶活性研究[D]. 长春: 吉林农业大学, 2017.
FANG H Y . Study on the growth and development and extracellular enzyme activity of different color strain of Auricularia cornea[D]. Changchun: Jilin Agricultural University, 2017. ( in Chinese)
[16] 刘兵 . γ-氨基丁酸和海藻糖对高温胁迫香菇菌丝胞外酶活性的影响[D]. 晋中: 山西农业大学, 2017.
LIU B . Effect of GABA and trehalose on the activity of exoenzyme induced by heat stress in mycelia of Lentinus edodes[D]. Jinzhong: Shanxi Agricultural University, 2017. ( in Chinese)
[17] ZERVA A, ZERVAKIS G I, CHRISTAKOPOULOS P, TOPAKAS E . Degradation of olive mill wastewater by the induced extracellular ligninolytic enzymes of two wood-rot fungi. Journal of Environmental Management, 2017,203(2):791-798.
[18] HU C J, HUANG D L, ZENG G M, CHENG M, GONG X M, WANG R Z, XUE W J, HU Z X, LIU Y N . The combination of Fenton process and Phanerochaete chrysosporium for the removal of bisphenol A in river sediments: Mechanism related to extracellular enzyme, organic acid and iron. Chemical Engineering Journal, 2018,338:432-439.
[19] PANDEY R K, TEWARI S, TEWARI L . Lignolytic mushroom Lenzites elegans WDP2: Laccase production, characterization, and bioremediation of synthetic dyes. Ecotoxicology and Environmental Safety, 2018,158:50-58.
[20] ZHAI F H, HAN J R . Decomposition of asparagus old stalks by Pleurotus spp. under mushroom-growing conditions. Scientia Horticulturae, 2018,231:11-14.
[21] 郝敬喆 . 新疆野生巴尔喀什蘑菇驯化栽培与漆酶活性研究[D]. 北京: 中国农业大学, 2019.
HAO J Z . Domesticated cultivation of Xinjiang wild mushroom Agaricus balchaschensis and laccase activity[D]. Beijing: China Agricultural University, 2019. ( in Chinese)
[22] 曾春函, 王传华 . 我国主要蜜环菌生物种胞外酶活性对温度的种特异性响应. 菌物学报, 2019,38(1):1-15.
ZENG C H, WANG C H . Specificity response of extracellular enzyme activities to temperature of eight Armillaria species in China. Mycosystema, 2019,38(1):1-15. (in Chinese)
[23] 方宏阳, 任梓铭, 孟秀秀, 代俊杰, 李寿建, 黎志文, 李晓 . 玉木耳胞外酶变化与农艺性状关系. 分子植物育种, 2018,16(13):4431-4435.
FANG H Y, REN Z M, MENG X X, DAI J J, LI S J, LI Z W, LI X . The relationship between extracellular enzymes changes and agronomic traits in Auricularia fuscosuccinea. Molecular Plant Breeding, 2018,16(13):4431-4435. (in Chinese)
[24] 李利梅, 朱国胜, 黄万兵, 卢颖颖, 龚光禄, 张丽娜, 杨通静, 桂阳 . 红托竹荪母种菌丝生长特性及胞外酶活性. 食用菌学报, 2018,25(3):30-35.
LI L M, ZHU G S, HUANG W B, LU Y Y, GONG G L, ZHANG L N, YANG T J, GUI Y . Mycelial growth characteristics and extracellular enzyme activity of Dictyophora rubrovalvata. Acta Edulis Fungi, 2018,25(3):30-35. (in Chinese)
[25] 吴亚召, 张文隽, 雷萍, 杜芳 . 茶树菇生长发育过程中几种胞外酶活性的变化. 西北农林科技大学学报(自然科学版), 2018,46(11):115-120.
WU Y Z, ZHANG W J, LEI P, DU F . Changes of extracellular enzymes activities during development of Agrocybe aegerita. Journal of Northwest A & F University (Natural Science Edition), 2018,46(11):115-120. (in Chinese)
[26] 靖云阁 . 白灵侧耳菌丝生理成熟期环境控制及生理指标测定[D]. 北京: 中国农业科学院, 2018.
JING Y G . Studies of environment control and physiological test during Pleurotus tuoliensis in mycelium physiological maturity period[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. ( in Chinese)
[27] 柴红梅, 周会明, 赵静, 陈卫民, 赵永昌 . 利用自交寻找食用菌发育缺陷型基因的研究. 农业科学与技术: 英文版, 2012,13(10):2037-2043.
CHAI H M, ZHOU H M, ZHAO J, CHEN W M, ZHAO Y C . Search development-deficient genes in edible mushroom by self-crossing. Agricultural Science& Technology, 2012,13(10):2037-2043. (in Chinese)
[28] JI C, NGUYEN L N, HOU J W, HAI F I, CHEN V . Direct immobilization of laccase on titania nanoparticles from crude enzyme extracts of P. ostreatus culture for micro-pollutant degradation. Separation and Purification Technology, 2017,178:215-223.
[29] MILLER G L . Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 1959,31(3):426-428.
[30] SEBNEM K, SAADET B . Yield performances and changes in enzyme activities of Pleurotus spp. (P. ostreatus and P. sajor-caju) cultivated on different agricultural wastes. Bioresource Technology, 2010,101(9):3164-3169 .
[31] DECKER S R, ADNEY W S, JENNINGS E, VINZANT T B, HIMMEL M E . Automated filter paper assay for determination of cellulose activity. Applied Biochemistry and Biotechnology, 2003,107(1):689-704.
[32] LU Y H, DENG X, CHENG Z, LI Q, LIU G . Enhanced production of hybrid extracellular β-glucanase by recombinant Escherichiu coli using experimental design method. Chinese Journal of Chemical Engineering, 2007,15(2):172-177.
[33] SHAMALA T R, SREEKANYIAH K R . Production of cellulases and D-xylanase by some selected fungal isolates. Enzyme and Microbial Technology, 1986,8(3):178-182.
[34] SIMONIS J L, RAJA H A, SHEARER C A . Extracellular enzymes and soft rot decay: Are ascomycetes important degraders in fresh water. Fungal Diversity, 2008,31(1):135-146.
[35] LOWRY O H, ROSENBROUGH M J, FARR A L, RANDALL R J . Protein measurement with folin-phenol reagent. The Journal of Biological Chemistry, 1951,193(1):265-275.
[36] EGGER K N . Substrate hydrolysis patterns of post-fire ascomycetes (Pezizales). Mycologia, 1986,78(5):771-780.
[37] POINTING S B . Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Diversity, 1999,2:17-33.
[38] SIK S, UNYAYAR A . Phanerochaete chrysosporium and Funulia trogii fort he degradation of cotton stalk and their laccase, peroxidase, ligninase and cellulose enzyme activities under semisolid state conditions. Turkish Journal of Biology, 1998,22(3):287-298.
[39] VAN DER KOOIJ M A,, HOLLIS F, LOZANO L, ZALACHORAS I, ABAD S, ZANOLETTI O, SANDI C . Diazepam actions in the VTA enhance social dominance and mitochondrial function in the nucleus accumbens by activation of dopamine D1 receptors. Molecular psychiatry, 2018,23(3):569.
[40] 陈岗, 詹永, 杨勇, 吴振, 谢会川, 石文娟, 柴佳炎, 龚胡荣, 罗杨 . 温度对银耳胞外酶活力及营养品质特性的影响. 食品科学, 2017,38(23):113-120.
CHEN G, ZHAN Y, YANG Y, WU Z, XIE H C, SHI W J, CHAI J Y, GONG H R, LUO Y . Effect of cultivation temperature on extracellular enzyme activities and nutritional quality characteristics of Tremella fuciformis. Food Science, 2017,38(23):113-120. (in Chinese)
[41] LARRAYA L M, IDARETA E, ARANA D, RITTER E, PISABARRO A G, RAMIREZ L . Quantitative trait loci controlling vegetative growth rate in the edible basidiomycete Pleurotus ostreatus. Applied and Enviromental Microbiology, 2002,68(3):1109-1114.
[42] LARRAYA L M, ALFONSO M, PISABRRO A G, RAMIREZ L . Mapping of genomic regions (Quantitative Trait Loci) controlling production and quality in industrial cultures of the edible basidiomycete Pleurotus ostreatus. Applied and Environmental Microbiology, 2003,69(6):3617-3625.
[43] OLSON A . Genetic linkage between growth rate and the intersterility genes S and P in the basidiomycete Heterobasidion annosum s. lat. Mycological Research, 2006,110(8):979-984.
[44] SANTOYO F GONZÁLEZ A E, TERRÓN M C, RAMÍREZ L, PISABARRO A G, . Quantitative linkage mapping of lignin-degrading enzymatic activities in Pleurotus ostreatus. Enzyme and Microbial Technology, 2008,43(2):137-143.
[45] LARRAYA L M, PEREZ G, IRIBARREN I . Relationships between monokaryotic growth rate and mating type in the edible basidiomycete Pleurotus ostreatus. Applied and Environmental Microbiology, 2001,67(8):3385-3390.
[46] VAN DER NEST M A, SLIPPERS B, STEENKAMP E T, DE VOS L, VAN ZYL K, STENLID J, WINGFIELD B J, WINGFIELD B D . Genetic linkage map for Amylostereum areolatum reveals an association between vegetative growth and sexual and self-recognition. Fungal Genetics and Biology, 2009,46(9):632-641.
[47] TOKIMOTO K, KOMATSU M, TAKEMARU T . Incompatibility factors in the natural population of Lentinula edodes in Japan. Reports of the Tottori Mycological Institute, 1973,10:371-376.
[48] MURAKAMI S, TAKEMARU T . “Puff” mutation induced by UV irradiation in Lentinus edodes (Berk.) Sing. Reports of the Tottori Mycological Institute, 1975,12:47-51.
[49] MURAGUCHI H, ITO Y, KAMADA T, YANAGI S O . A linkage map of the basidiomycete Coprinus cinereus based on random amplified polymorphic DNAs and restriction fragment length polymorphisms. Fungal Genetics and Biology, 2003,40(2):93-102.
[50] TERASHIMA K, MATSUMOTO T, HAYASHI E, FUKUMASA- NAKAI Y . A genetic linkage map of Lentinula edodes (shiitake) based on AFLP markers. Mycological Research, 2002,106(8):91l-917.
[51] 周会明, 柴红梅, 赵静, 魏云林, 赵永昌 . 基于SPSS的杨柳田头菇菌丝生长速度与交配型相关性分析. 西南农业学报, 2010,23(6):1992-1998.
ZHOU H M, CHAI H M, ZHAO J, WEI Y L, ZHAO Y C . Correlation analysis between mycelial growth rate and mating type of Agrocybe salicacola based on SPSS statistics. Southwest China Journal of Agricultural Sciences, 2010,23(6):1992-1998. (in Chinese)
[1] ZHANG Lu,ZHANG ShuiQing,REN KeYu,LI JunJie,DUAN YingHua,XU MingGang. Soil Ecoenzymatic Stoichiometry and Relationship with Microbial Biomass in Fluvo-Aquic Soils with Various Fertilities [J]. Scientia Agricultura Sinica, 2020, 53(20): 4226-4236.
[2] XU Meng,XU LiJun,CHENG ShuLan,FANG HuaJun,LU MingZhu,YU GuangXia,YANG Yan,GENG Jing,CAO ZiCheng,LI YuNa. Responses of Soil Organic Carbon Fractionation and Microbial Community to Nitrogen and Water Addition in Artificial Grassland [J]. Scientia Agricultura Sinica, 2020, 53(13): 2678-2690.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!