Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (23): 4644-4655.doi: 10.3864/j.issn.0578-1752.2017.23.017
• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles Next Articles
WANG WenLong1, FENG ChenChen1, HONG Mei1, YUE JianWei1, Huhebateer1, LIU ChunXia2
[1] 宋铭忻, 张龙现. 兽医寄生虫学. 北京: 科学出版社, 2009: 183-184.
SONG M X, ZHANG L X. Veterinary Parasitology. Beijing: Science Press, 2009: 183-184. (in Chinese)
[2] 黄兵, 沈杰. 中国畜禽寄生虫形态分类图谱. 北京: 中国农业科学技术出版社, 2006: 462-463.
HUANG B, SHEN J. Classific Atlas of Parasites for Livestock and Poultry in China. Beijing: China Agriculture Press, 2006: 462-463. (in Chinese)
[3] 赵治国. 我国骆驼斯氏副柔线虫病传播媒介的研究[D]. 内蒙古农业大学, 2010.
Zhao Z G. Study on the vector of camel parabronemosis in China[D]. Inner Mongolia: Inner Mongolia Agricultural University, 2010. (in Chinese)
[4] elegans Sequencing Consortium C. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science, 1998, 282: 2012–2018.
[5] Fu Y, Lan J, Zhang Z, Hou R, Wu X, Yang D, Zhang R, Zheng W, Nie H, Xie Y, Yan N, Yang Z, Wang C, Luo L, Liu L, Gu X, Wang S, Peng X, Yang G. Novel insights into the transcriptome of Dirofilaria immitis. PLoS One, 2012, 7(7): e41639.
[6] Li B W, Wang Z Y, Rush C A, Mitreva M, Weil J G. Transcription profiling reveals stage-and function-dependent expression patterns in the filarial nematode Brugia malayi. BMC Genomics, 2012, 13: 184.
[7] Laing R, Kikuchi T, Martinelli A, Tsai IJ, Beech R N, Redman E, Holroyd N, Bartley D J, Beasley H, Britton C, Curran D, Devaney E, Gilabert A, Hunt M, Jackson F, Johnston SL, Kryukov I, Li K, Morrison A A, Reid A J, Sargison N, Saunders G I, Wasmuth J D, Wolstenholme A, Berriman M, Gilleard J S, Cotton J A. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biology, 2013, 14: R88.
[8] Schwarz E M, Korhonen P K, Campbell B E, Young N D, Jex A R, Jabbar A, Hall R S, Mondal A, Howe A C, Pell J, Hofmann A, Boag P R, Zhu X Q, Gregory T, Loukas A, Williams B A, Antoshechkin I, Brown C, Sternberg P W, Gasser R B. The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biology, 2013, 14(8): R89.
[9] 刘娇, 张建珍, 李大琪, 张婷婷, 马恩波, 张建琴. 中华稻蝗羧酸酯酶家族基因生物信息学及组织表达特异性分析. 中国农业科学, 2015, 48(21): 4272-4284.
LIU J, ZHANG J Z, LI D Q, ZHANG T T, MA E B, ZHANG J Q. Bioinformatics and tissue-specific expression analysis of carboxylesterase genes from Oxya chinensis. Scientia Agricultura Sinica, 2015, 48(21): 4272-4284. (in Chinese)
[10] 陈大福, 郭睿, 熊翠玲, 梁勤, 郑燕珍, 徐细建, 张曌楠, 黄枳腱, 张璐, 王鸿权, 解彦玲, 童新宇. 中华蜜蜂幼虫肠道响应球囊菌早期胁迫的转录组学. 中国农业科学, 2017, 50(13): 2614-2623.
CHEN D F, GUO R, XIONG C L, LIANG Q, ZHENG Y Z, XU X J, ZHANG Z N, HUANG Z J, ZHANG L, WANG H Q, XIE Y L, TONG X Y. Transcriptome of Apis cerana cerana larval gut under the stress of Ascosphaera apis. Scientia Agricultura Sinica, 2017, 50(13): 2614-2623. (in Chinese)
[11] Johnson J D, Mehus J G, Tews K, Milavetz B I, Lambeth D O. Genetic evidence for the expression of ATP- and GTP-specific succinyl-CoA synthetases in multicellular eucaryotes. The Journal of Biological Chemistry, 1998, 273(42): 27580-27586.
[12] Przybyla Z B, Dennis R A, Zakharkin S O, McCammon M T. Genes of succinyl-CoA ligase from Saccharomyces cerevisiae. European Journal of Biochemistry, 1998, 258(2): 736-743.
[13] Delawary M, Nakazawa T, Tezuka T, Sawa M, Iino Y, Takenawa T, Yamamoto T. Molecular characterization of a novel RhoGAP, RRC-1 of the nematode Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2007, 357(2): 377-382.
[14] Yang X D, Karhadkar T R, Medina J, Robertson S M, Lin R. β-Catenin-related protein WRM-1 is a multifunctional regulatory subunit of the LIT-1 MAPK complex. Proceedings of the National Academy of Sciences of United States America, 2015, 112(2): E137-146.
[15] Chuang M H, Chiou S H, Huang C H, Yang W B, Wong C H. The lifespan-promoting effect of acetic acid and Reishi polysaccharide. Bioorganic & Medicinal Chemistry, 2009, 17(22): 7831-7840.
[16] Jackson B M, Abete L P, Krause M W, Eisenmann D M. Use of an activated beta-catenin to identify Wnt pathway target genes in Caenorhabditis elegans, including a subset of collagen genes expressed in late larval development. G3(Bethesda, Md. ), 2014, 4(4): 733-747.
[17] John W, Stuart K K. Global analysis of dauer gene expression in Caenorhabditis elegans. Development, 2003, 130: 1621-1634.
[18] Parker S, Baylis H A. Overexpression of caveolins in Caenorhabditis elegans induces changes in egg-laying and fecundity. Communicative & Integrative Biology, 2009, 2(5): 382-384.
[19] Romel H B, Ricardo R N, Saé M H, Karen N C, Lenin P, Ana G S, Jorge M M. Sex steroids effects on the molting process of the helminth human parasite Trichinella spiralis. Journal of Biomedicine & Biotechnology, 2011, 3: 625380.
[20] Li H, Ren C, Shi J, Hang X, Zhang F, Gao Y, Wu Y, Xu L, Chen C, Zhang C. A proteomic view of Caenorhabditis elegans caused by short-term hypoxic stress. Proteome Science, 2010, 8: 49.
[21] Johnson R W, Liu L Y, Hanna R W, Chamberlin H M. The Caenorhabditis elegans heterochronic gene lin-14 coordinates temporal progression and maturation in the egg-laying system. Developmental Dynamics, 2009, 238(2): 394-404.
[22] Li J, Greenwald I. LIN-14 inhibition of LIN-12 contributes to precision and timing of C. elegans vulval fate patterning. Current Biology: CB, 2010, 20(20): 1875-1879.
[23] Honjoh S, Yamamoto T, Uno M, Nishida E. Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature, 2009, 457(7230): 726-730.
[24] Tennessen J M, Gardner H F, Volk M L, Rouqvie A E. Novel heterochronic functions of the Caenorhabditis elegans period- related protein LIN-42. Developmental biology, 2006, 289(1): 30-43.
[25] Horn M, Geisen C, Cermak L, Becker B, Nakamura S, Klein C, Pagano M, Antebi A. DRE-1/FBXO11-dependent degradation of BLMP-1/BLIMP-1 Governs C. elegans developmental timing and maturation. Developmental Cell, 2014, 28(6): 697-710.
[26] Wang Z, Jonathan S, You Y J, Ranjit N, Tang H, Xie Y, Lok J B, Mangelsdorf D J, Kliewer S A. The nuclear receptor DAF-12 regulates nutrient metabolism and reproductive growth in nematodes. Plos Genetics, 2015, 11(3): e1005027.
[27] Huang T F, Cho C Y, Cheng Y T, Huang J W, Wu Y Z, Yeh A Y, Nishiwaki K, Chang S C, Wu Y C. BLMP-1/Blimp-1 Regulates the spatiotemporal cell migration pattern in C. elegans. PLoS Genetics, 2014, 10(6): e1004428.
[28] Van G M R, Hadjivassiliou H, Jolly A, Yamamoto K R. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. PLoS Biology, 2005, 3(2): e53.
[29] Huang W M, Li Z Y, Xu Y J, Wang W, Zhou M G, Zhang P, Liu P S, Xu T, Wu Z X. PKG and NHR-49 signalling co-ordinately regulate short-term fasting-induced lysosomal lipid accumulation in C. elegans. The Biochemical Journal, 2014, 461(3): 509-520.
[30] Brozova Z, Simeckova K, Kostrouch Z, Rall J E, Kostrouchova M. NHR-40, a Caenorhabditis elegans supplementary nuclear receptor, regulates embryonic and early larval development. Mechanisms of Development, 2006, 123(9): 689-701.
[31] Suzuki M, Sagoh N, Iwasaki H, Inoue H, Takahashi K. Metalloproteases with EGF, CUB, and thrombospondin-1 domains function in molting of Caenorhabditis elegans. Biological Chemistry, 2004, 385(6): 565-568.
[32] Stepek G, McCormack G, Birnie A J, Page A P. The astacin metalloprotease moulting enzyme NAS-36 is required for normal cuticle ecdysis in free-living and parasitic nematode. Parasitology, 2011, 138(2): 237-248.
[33] Sharma O P, Agrawal S, Kumar M S. Physicochemical properties of the modeled structure of astacin metalloprotease moulting enzyme NAS-36 and mapping the druggable allosteric space of Heamonchus contortus, Brugia malayi and Ceanorhabditis elegans via molecular dynamics simulation. Interdisciplinary Sciences Computational Life Sciences, 2013, 5(4): 312-323. |
[1] |
HU Jie,MIAO Xiang-yang,FENG Hao-yong . Differentially Expressed Genes in the Development of in vivo and Parthenogenetically Activated Early Porcine Embryos [J]. Scientia Agricultura Sinica, 2010, 43(11): 2388-2396 . |
|