Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (21): 4192-4202.doi: 10.3864/j.issn.0578-1752.2016.21.013

• HORTICULTURE·STORAGE·FRESH-KEEPING·PROCESSING • Previous Articles     Next Articles

Expression Analysis of Differential Proteins in Three Kinds of Flower Buds with Sex Differentiation of Asparagus

LIU Meng, NIE Lan-chun, WANG Shan-shan, HU Shu-ming   

  1. College of Horticulture, Agriculture University of Hebei, Baoding 071000, Hebei
  • Received:2016-04-15 Online:2016-11-01 Published:2016-11-01

Abstract: 【Objective】 To investigate the proteins which are related to the sex differentiation, and lay a foundation for revealing the molecular mechanism of sex differentiation in Asparagus officinalis L. 【Method】 Differential proteins were analyzed in female flower buds, male flower buds and hermaphroditic flower buds at hermaphroditic differentiation stage by 2-D electrophoresis, mass spectrometry and bioinformatics method. 【Result】 Compared male and female flower buds, 25 specific protein spots and 5 up-regulated protein spots were detected in male flower buds, 13 specific protein spots and 12 up-regulated protein spots were detected in female flower buds. Compared with male flower buds, 19 specific protein spots and 8 up-regulated protein spots were detected in hermaphroditic flower buds. The proteins were identified by LC-MS-MS and analyzed through bioinformatics. Six specific or up-regulated homologous proteins of Asparagus were identified in male flower buds, including luminal binding protein (BiP) which promoted the synthesis of alpha amylase; beta-amylase, glyceraldehyde-3-phosphate and cytosolic phosphoglycerate kinase which are all involved in the glycolytic pathway, PAP fibrillin which is associated with liposomes,Os02g0634900 which its function is unknown. There were 16 specific or up-regulated homologous proteins of Asparagus were identified in hermaphroditic and female flower buds, including enolase 1 and cytosolic phospho-glycerate kinase which are involved in the glycolytic pathway, actin isoform B and actin which maintained cell structure, ATP synthase CF1 alpha subunit and ATP synthase beta subunit which participated in energy metabolism; small GTP-binding protein and GTP-binding protein which participated in material transportation, ribosome inactivating protein RIPm which depressed protein synthesis, ADP-ribosylation factor which participated in material transportation and signal transduction, nucleoside diphosphate kinase which catalyzed phosphate group transfer, plastid-lipid-associated protein which participated in lipid metabolism, oxygen-evolving enhancer protein 1 which was related to photosynthesis, porin which allowed ions, sugars and amino acids across the outer membrane, intracellular pathogenesis-related protein isoform 4 and hypothetical protein which their functions are unknown.【Conclusion】Beta-amylase, glyceraldehyde-3-phosphate dehydrogenase, cytosolic phosphoglycerate kinase, luminal binding protein (BiP), PAP fibrillin and Os02g0634900 which are homologous proteins of Asparagus are related to the male organ development. Enolase 1, cytosolic phosphoglycerate kinase, actin isoform B, actin, ATP synthase CF1 alpha subunit, small GTP-binding protein, GTP-binding protein, ribosome inactivating protein RIPm, with strong similarity to ADP-ribosylation factor, nucleoside diphosphate kinase, plastid-lipid-associated protein, oxygen-evolving enhancer protein 1, porin and hypothetical protein which are homologous proteins of Asparagus, ATP synthase beta subunit and intracellular pathogenesis-related protein isoform 4 are related to the female organ development. Oxygen-evolving enhancer protein 1 and porin which are homologous proteins of Asparagus might be the key proteins of female organ’s development.

Key words: Asparagus officinalis, female flower buds, male flower buds, hermaphroditic flower buds, sex differentiation, differential proteins

[1]    Chin C K, Garrison S A. Functional elements from asparagus for human health. Acta Horticulture, 2008, 776: 219-225.
[2]    李翠霞, 毛箬青, 李志忠, 王永刚, 刘晓风. 芦笋营养成分的分析评价. 现代食品科技, 2011, 27(10): 1260-1263.
LI C X, MAO R Q, LI Z Z, WANG Y G, LIU X F. Composition analysis and nutritional evaluation of the Asparagus. Morden Food Science and Technology, 2011, 27(10): 1260-1263. (in Chinese)
[3]    WANG L W, ZHAO B, HUANG Y X. Determination of diosgenin in Asparagus officinalis byproduct by RP-HPLC. Medicinal Plant, 2011, 2(1): 42-44.
[4]    Mitchell C H, Diggle P K. The evolution of unisexual flowers: morphological and functional convergence results from diverse developmental transitions. American Journal of Botany, 2005, 92(7): 1068-1076.
[5]    LONGO G P M, CAPORALI E, CARBONI A, SPADA A, FALAVIGNA A, NICHOLS M, SWAIN D. Transition from hermaphroditic to unisexual flowers in male and female plants of asparagus. Acta Horticulture, 1996, 415: 151-155.
[6]    陈光宇, 周劲松, 汤泳萍, 罗绍春, 占丰溪, 尹富强. 芦笋两性株利用的初步研究. 园艺学报, 2007, 34(6): 1530.
CHEN G Y, ZHOU J S, TANG Y P, LUO S C, ZHAN F X, YIN F Q.Preliminary utilization on the andromonoecious plants of the Asparagus. Acta Horticulturae Sinica, 2007, 34(6): 1530. (in Chinese)
[7]    BRACAL M, CAPORALI E, GALLI M G, LONGO C, MARZIANI- LONGO G, ROSSI G, SPA A, SOAV C, FALAVIGN A, RAFFALDI F, MAESTRI E, RESTIVOC F M, TASSIC F. Sex determination and differentiation in Asparagus officinalis L. Plant Science, 1991, 80(1/2): 67-77.
[8]    REAMON-BUTTNER S M, JUNG C. AFLP-derived STS markers for the identification of sex in Asparagus officinalis L. Theoretical and Applied Genetics, 2000, 100(3/4): 432-438.
[9]    JAMSARI A, NITZ I, Reamon-Buttner S M, JUNG C. BAC-derived diagnosetic markers for sex determination in asparagus. Theoretical and Applied Genetics, 2004, 108(6): 1140-1146.
[10]   周劲松, 汤泳萍, 罗绍春, 尹富强, 占丰溪, 梁国华, 陈光宇. DNA分子标记早期快速鉴别芦笋雌雄株. 分子植物育种, 2007, 15(3): 363-366.
ZHOU J S, TANG Y P, LUO S C, YIN F Q, ZHAN F X, LIANG G H, CHEN G Y. Quick distinguishing the sex of Asparagus plant at early growth stage by a STS marker.Molecular Plant Breeding, 2007, 15(3): 363-366. (in Chinese)
[11]   SINTON S M, WILSON D R, BENSON B. Comparative performance of male and female plants during the annual growth cycle of a dioecious asparagus cultivar. Acta Horticulture, 1999, 479: 347-353.
[12]   陈光宇, 周劲松, 汤泳萍, 罗绍春, 占丰溪, 尹富强. 芦笋两性株调查与初步利用研究. 江西农业学报, 2007, 19(9): 31-34.
CHEN G Y, ZHOU J S, TANG Y P, LUO S C, ZHAN F X, YIN F Q. Investigation and preliminary utilization of andromonoecious plants of Asparagus. Acta Agriculturae Jiangxi, 2007, 19(9): 31-34. (in Chinese)
[13]   周劲松, 汤泳萍, 盛文涛, 罗绍春, 陈光宇. 芦笋性别决定与性别分化研究进展. 植物遗传资源学报, 2010, 11(5): 600-604.
ZHOU J S, TANG Y P, SHENG W T, LUO S C, CHEN G Y. Progress in research on sex determination and differentiation in Asparagus officinalis L. Journal of Plant Genetic Resources, 2010, 11(5): 600-604. (in Chinese)
[14]   LOSA A, CAPORALI E, SPADA A, MARTINELLI S, MARZIANI  G. AOM3 and AOM4: two MADS box genes expressed in reproductive structures of Asparagus officinalis. Sex Plant Reprod, 2004, 16(5): 215-221.
[15]   PARK J H, ISHIKAWA Y C, YOSHIDA R, KANNO A, KAMEYA T. Expression of AODEF, a B-functional MADS-box gene,instamens and inner tepals of the dioecious species Asparagus officinalis L. Plant Cell Physiology, 2003, 51(6): 867-875.
[16]   KANNO A, HIENUKI H, ITO T, NAKAMURA T, FUKUDA T, YUN P Y,SONG I J, KAMIMURA T, OCHIAI T, YOKOYAMA J, MAKIi M, KAMEYA T. The structure and expression of SEPALLATA-like genes in Asparagus species (Asparagaceae). Sex Plant Reprod, 2006, 19(3): 133-144.
[17]   ALEX H, FRANCESCO M, SHAN H Y, FRANCESCO S, AGOSTINO F, JIM L M. Sex-biased gene expression in dioecious garden asparagus(Asparagus officinalis). New Phytologist, 2015, 207(3): 883-892.
[18]   张鹏, 朱育强, 陈新娟, 陈丽萍, 周胜军. 差异蛋白质组学技术及其在园艺植物中的应用. 中国农学通报, 2011, 27(4): 212-218.
ZHANG P, ZHU Y Q, CHEN X J, CHEN L P, ZHOU S J. Differential proteomics technology and its application in horticultural plants. Chinese Agricultural Science Bulletin, 2011, 27(4): 212-218. (in Chinese)
[19]   胡青. 文冠果两种不同类型花中雌蕊发育情况的比较研究[D]. 北京: 北京林业大学, 2004.
Hu Q. The comparative study on pistil development in two different kinds of flowers of Xanthoceras sorbifolia Bunge [D]. Beijing: Beijing Forestry University, 2004. (in Chinese)
[20]   汪俏梅, 曾广文. 苦瓜性别分化的特异蛋白质研究. 植物学报, 1998,42(3): 58-63.
WANG Q M, ZENG G W. Study of specific protein on sex differentiation of Momotdica charantia. Acta Botanica Sinica, 1998, 42(3): 58-63. (in Chinese)
[21]   林鸣, 曹宗巽. 黄瓜器官特异蛋白的研究. 植物学报, 1996, 40(7): 525-529, 588.
LIN M, CAO Z X.The floral-specific proteins of cucumber. Acta Botanica Sinica, 1996, 40(7): 525-529, 588. (in Chinese)
[22]   王珊, 蔡斌华, 章镇, 侯计华, 徐军霞, 高志红. 果梅完全花与不完全花的差异蛋白分析. 植物遗传资源学报, 2008, 9(4): 465-468.
WANG S, CAI B H, ZHANG Z, HOU J H, XU J X, GAO Z H. Analysis of differential proteins in perfect and imperfect flowers of Japanese Apricot (Prunusmume Sieb. et Zucc.). Journal of Plant Genetic Resources, 2008, 9(4): 465-468. (in Chinese)
[23]   胡淑明, 陈海媛, 王海燕, 乜兰春. 芦笋雌雄花发育过程的解剖学观察. 河北农业大学学报, 2013, 36(1): 25-27, 45.
HU S M, CHEN H Y, WANG H Y, NIE L C. Anatomical observation on the developmental stages of Asparagus officinalis L. staminate and pistillate flowers. Journal of Agricultural University of Hebei, 2013, 36(1): 25-27, 45. (in Chinese)
[24]   于静娟, 徐南方, 孟繁静. 大麻雄蕊特异蛋白质的初步研究. 中国农业大学学报, 1997, 2(3): 78.
YU J J, XU N F, MENG F J. Study of stamen specilie protein of hemp. Journal of China Agricultural University, 1997, 2(3): 78. (in Chinese)
[25]   庞广昌, 马全祥, 王宇, 张波. 利用单花粉蛋白电泳技术对玉米花粉发育过程特异蛋白表达的研究. 西北植物学报, 1996, 16(1): 28-33.
PANG G C, MA Q X, WANG Y, ZHANG B. Studies on expression of specific proteins during pollen development of Zea may L. single pollen grain protein electrophoresis. Acta Botanica Boreal-Occidentalia Sinica, 1996, 16(1): 28-33. (in Chinese)
[26]   于凤池, 孙耘子, 袁高峰, 汪俏梅. 栝楼性别分化特异大分子标记物研究. 浙江农业学报, 2003, 15(6): 8-11.
YU F C, SUN Y Z, YUAN G F, WANG Q M. Studies on the specific macromolecular markers of sex differentiation in Thrichosanthes kirilowii Maxim. Acta Agriculturae Zhejiangensis, 2003, 15(6): 8-11. (in Chinese)
[27] VERGNE P, RICCARDI F, BECKERT M, DUMAS C. Identification of a 32-kDa anther marker protein for androgenic response in maize, Zea mays L. Theoretical and Applied Genetics, 1993, 86(7): 843-850.
[28]   Golan-Goldhirsh A, Peri I, Yehudith B, Smirnoff P. Inflorescence bud proteins of Pistacia vera. Trees-Structure and Function, 1998, 12(7): 415.
[29]   张达瀚, 张屹. 水稻S5-ORF3蛋白质的进化分析. 河北科技大学学报, 2014, 35(4): 397-402.
ZHANG D H, ZHANG Y. Evolution analysis of rice protein S5-ORF3. Journal of Hebei University of Science and Technology, 2014, 35(4): 397-402.(in Chinese)
[30]   滕蕾, 黄瑾, 赵竹露, 李旭锋, 杨毅. Fibrillin操纵子在甘蓝型油菜和拟南芥中的瞬时表达. 四川大学学报(自然科学版), 2006, 43(6): 1394-1398.
TENG L, HUANG J, ZHAO Z L, LI X F, YANG Y. Transient expression of Fibrillin promoter in protoplasts of Arabidopsis thaliana and Brassica napus. Journal of Sichuan University (Natural Science Edition), 2006, 43(6): 1394-1398. (in Chinese)
[31]   王学德. 棉花细胞质雄性不育花药的淀粉酶与碳水化合物. 棉花学报, 1999, 11(3): 113-116.
WANG X D. Amylase and carbohydrate in anthers of cytoplasmic male sterile cotton. Acta Gossypii Sinica, 1999, 11(3): 113-116. (in Chinese)
[32]   UCKER D S, JAIN M R, PATTABIRAMAN G, PALASIEWICZ K, BIRGE R B, LI H. Externalized glycolytic enzymes are novel, conserved, and early biomarkers of apoptosis. Journal of Biological Chemistry, 2012, 287(13): 10325-10343.
[33]   O,mullane M J, Baker M S. Loss of cell viability dramatically elevates cell surface plasminogen binding and activation. Experimental Cell Research, 1998, 242(1): 153-164.
[34]   王文斌, 王金胜, 邓西平, 刘建东. 植物核苷二磷酸激酶(NDPKs)研究进展. 农学学报, 2011, 1(6): 1-5.
WANG W B, WANG J S, DENG X P, LIU J D. Research advances on nucleoside diphosphate kinases (NDPKs) of plants. Journal of Agriculture, 2011, 1(6): 1-5. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!