Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (1): 136-145.doi: 10.3864/j.issn.0578-1752.2013.01.016

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Construction of Eukaryotic Expression Vector of Bovine fabp3 or fabp4 Gene and Expression of the Gene in Mouse Myoblasts

 WANG  Jie, AO  Xu-Dong, LI  Wen-Bin, BAI  Hai-Dong, YUE  Yong-Li, YU  Hai-Quan   

  1. The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Huhhot 010021
  • Received:2012-05-07 Online:2013-01-01 Published:2012-07-10

Abstract: 【Objective】 The objective of the study is to analyze the intrinsic expression bovine fabp3 and fabp4 genes, and the dynamic changes of fabp3 and fabp4 gene expression after transfected the eukaryotic expression vector into mice myoblasts. 【Method】 Eukaryotic expression vector pDsHF3 for fabp3 gene, pDsHF4 for fabp4 gene were constructed and transfected into mice myoblasts by using liposome technique. The transfected mice myoblasts were induced differentiation into myotubes by 2% of pregnant mare serum after 72 h transfection. The changes of gene expression of myoblasts and myotubes were analyzed by real-time PCR. 【Result】 The results showed that, bovine fabp3 or fabp4 genes were expressed in transfected myoblasts, respectively. The intrinsic expression of mouse fabp3 or fabp4 gene was affected in myoblasts and in differentiated myotubes.【Conclusion】 Eukaryotic expression vectors pDsHF3 and pDsHF4 can highly express in proliferative myoblasts, and the expression of exogenous bovine fabp3 or fabp4 genes may affect intrinsic expression of mouse fabp3 and fabp4 genes in myoblasts and myotubes.

Key words: bovine fabp3 gene , bovine fabp4 gene , myoblasts , myotubes

[1]Geay Y, Bauchart D, Hocquette J F, Culioli J. Effect of nutritional factors on biochemical, structural and metabolic characteristics of muscles in ruminants, consequences on dietetic value and sensorial qualities of meat Reproduction Nutrition, Development, 2001, 41(1): 1-26.

[2]Zimmerman A W, Veerkamp J H. Members of the fatty acid-binding protein family inhibit cell-free protein synthesis. Federation of European Biochemical Societies, 1998, 437(3): 183-186.

[3]Chmurzyñska A. The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. Journal of Applied Genetics, 2006, 47(1): 39-48.

[4]Gerbens F, van Erp A J, Harders F L, Verburg F J, Meuwissen T H, Veerkamp J H, te Pas M F. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. Journal of Animal Science, 1999, 77(4): 846-852.

[5]Gerbens F, de Koning D J, Harders F L, Meuwissen T H, Janss L L, Groenen M A, Veerkamp J H, van Arendonk J A, te Pas M F. The effect of adipocyte and heart fatty acid binding protein genes on intramuscular fat and back fat content in Meishan crossbred pigs. Journal of Animal Science, 2000, 78(3): 552-559.

[6]Gerbens F , Verburg F J, van Moerkerk H T, Engel B, Buist W, Veerkamp J H , te Pas M F. Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs. Journal of Animal Science, 2001, 79(2): 347-354.

[7]Tyra M, Ropka-Molik K. Effect of the FABP3 and LEPR gene polymorphisms and expression levels on intramuscular fat (IMF) content and fat cover degree in pigs. Livestock Science, 2011, 142(1): 114-120.

[8]Cho K H, Kim M J, Heon G J, Chung H Y. Association of genetic variants for FABP3 gene with back fat thickness and intramuscular fat content in pig. Molecular Biology Reports, 2011, 38(3): 2161-2166.

[9]Calvo J H, Marcos S, Jurado J J, Serrano M. Association of the heart fatty acid-binding protein (FABP3) gene with milk traits in Manchega breed sheep. Animal Genetics, 2004, 354(4): 347-349.

[10]Michal J J, Zhang Z W, Gaskins C T, Jiang Z. The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu×Limousin F2 crosses. Animal Genetics, 2006, 37(4): 400-402.

[11]Cho S, Park T S, Yoon D H, Cheong H S, Namgoong S. Identification of genetic polymorphisms in FABP3 and FABP4 and putative association with black fat thickness in Korean native cattle. BMC Reports, 2008, 41(1): 29-34.

[12]Hoashi S, Hinenoya T, Tanaka A, Ohsaki H, Sasazaki S.   Association between fatty acid compositions and genotypes of FABP4 and LXR­alpha in Japanese black cattle. BMC Genetics, 2008, 9(1): 84-90.

[13]Jurie C, Cassar­Malek I, Bonnet M, Leroux C, Bauchart D. Adipocyte fatty acid­binding protein and mito-chondrial enzyme activities in muscles as relevant indicators of marbling in cattle. Journal of Animal Science, 2007, 85(10): 2660-2669.

[14]Swatland H J. Muscle growth in the fetal and neonatal pig. Journal of Animal Science, 1973, 37(2): 536-545.

[15]Yaffe D S O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature, 1977, 270(5639): 725-727.

[16]Glatz J F C, Schaap F G, Binas B, Bonen A, van der Vusse G J, Luiken J J F P. Cytoplasmic fatty acid-binding protein facilitates fatty acid utilization by skeletal muscle. Acta Physiologica Scandinavica, 2003, 178(4): 367-371.

[17]Claffey K P, Herrera V L, Brecher P, Nelson R O. Cloning and tissue distribution of rat heart fatty acid binding protein mRNA: identical forms in heart and skeletal muscle. Biochemistry, 1987, 26(24): 7900-7904.

[18]Binas B, Danneberg H, McWHIR J, Mullins L, Clark A J. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. The FASEB Journal, 1999, 13(8): 805-812.

[19]Binas B, Erol E. FABPs as determinants of myocellular and hepatic fuel metabolism. Molecular and Cellular Biochemistry, 2007, 299(1/2): 75-84.

[20]Shearer J, Fueger P T, Bracy D P, Wasserman D H, Rottman J N. Partial gene deletion of heart-type fatty acid-binding protein limits the severity of dietary-induced insulinresistance. Diabetes, 2005, 54(11): 3133-3139.

[21]Buhlmann C, Börchers T, Pollak M, Spener F. Fatty acid metabolism in human breast cancer cells (MCF7) transfected with heart-type fatty acid binding protein. Molecular and Cellular Biochemistry, 1999, 199(1/2): 41-48.

[22]Hotamisligil G S.Johnson R S, Distel R J, Ellis R, Papaioannou V E, Spiegelman B M. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science, 1996, 274(5291): 1377-1379.

[23]Coe N R, Simpson M A, Bernlohr D A. Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. Journal of Lipid Research, 1999, 40: 967-972.

[24]王守立, 杨光华, 步宏, 周桥, 郭立新, 张红英, 王华, 叶绿. 人胚成肌细胞体外培养的生物学特性研究. 生物医学工程学杂志, 2004, 21(2): 246-250.

Wang S L,Yang G H, Bu H, Zhou Q, Guo L X, Zhang H Y, Wang H, Ye L. Biological characteristics of human embryonic myoblasts in vitro. Journal of Biomedical Engineering, 2004, 21(2): 246-250. (in Chinese)
[1] CHEN Yu,ZHU HaoZhe,CHEN YiChun,LIU Zheng,DING Xi,GUO Yun,DING ShiJie,ZHOU GuangHong. Differentiation of Porcine Muscle Stem Cells in Three-Dimensional Hydrogels [J]. Scientia Agricultura Sinica, 2022, 55(22): 4500-4512.
[2] DU JiaWei,DU XinZe,YANG XinRan,SONG GuiBing,ZHAO Hui,ZAN LinSen,WANG HongBao. Interference in TP53INP2 Gene Inhibits the Differentiation of Bovine Myoblasts [J]. Scientia Agricultura Sinica, 2021, 54(21): 4685-4693.
[3] YUE Qun-Hua, YUAN Jian-Long, HAO Fei, JIN Mu-Zi, WANG Jing-Yuan, YANG Wen-Liang, LIU Dong-Jun, CANG Ming. Transfected FST Gene into Ovine Muscle-Drived Myogenic Cells to Regulate the Expression of MSTN Gene [J]. Scientia Agricultura Sinica, 2013, 46(2): 385-393.
[4] TANG Zhan-yi,YAN Yun-qin,GAO Xue-jun,LU Li-min,ZHU Dan-dan,JI Zhi-geng. Construction of Eukaryotic Expression Vector of Bovine myf6 Gene and Expression of the Gene in Myoblasts [J]. Scientia Agricultura Sinica, 2010, 43(13): 2793-2799 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!