Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (23): 4873-4882.doi: 10.3864/j.issn.0578-1752.2012.23.014

• STORAGE·FRESH-KEEPING·PROCESSING • Previous Articles     Next Articles

Strategies in Research on Saccharomyces cerevisiae in Post-Genomic Era

 SONG  Yang-Bo, MA  Jie, LI  Li, ZHANG  Liu-Yan, LIU  Yan-Lin   

  1. College of Enology, Northwest A & F University/Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, Shannxi
  • Received:2012-01-18 Online:2012-12-01 Published:2012-09-21

Abstract: The Saccharomyces cerevisiae has been extensively used as a model eukaryotic system. In the last decade, genomic techniques have revealed the important features of its molecular biology. In this paper, the methods of post-genomics applied on Saccharomyces cerevisiae were introdued and the most recent applications of post-genomic techniques to understand the different between laboratory strains and wine yeasts in yeast physiology were reviewed. The recent advances in wine yeast strain improvement were also reported and proposed a reference framework for integration of genomic information, bioinformatic tools and molecular biology techniques for cellular and metabolic engineering. Finally, the current state and future perspectives for using biotechnology in the wine industry were discussed.

Key words: post-genomics , SAGE , DNA micro-array , metabolic engineering

[1]Reid R J D, Benedetti P, Bjornsti M A. Yeast as a model organism for studying the actions of DNA topoisomerase-targeted drugs. Biochimica et Biophysica Acta, 1998, 1400: 289-300.

[2]Sychrová H. Yeast as a model organism to study transport and homeostasis of alkali metal cations. Physiological Research, 2004, 53(1): S91-S98. 

[3]Dujon B. The yeast genome project: what did we learn? Trends in Genetics, 1996, 12: 263-270.

[4]史硕博, 陈 涛, 赵学明. 转录组平台技术及其在代谢工程中的应用. 生物工程学报, 2010, 26(9): 1187-1198.

Shi S B, Chen T, Zhao X M. Transcriptome platforms and applications to metabolic engineering. Chinese Journal of Biotechnology, 2010, 26(9): 1187-1198. (in Chinese)

[5]Velculescu V, Zhang L, Vogelstein B, Kinzler K. Serial analysis of gene expression. Science, 1995, 270(10): 484-487.

[6]孙  剑. 基因表达的连续分析技术. 生命的化学, 2003, 23(4): 313-315.

Sun J. Serial analysis of gene expression. Chemistry of Life, 2003, 23(4): 313-315. (in Chinese)

[7]Velculescu V, Zhang L, Zhou W, Vogelstein J, Basrai M, Bassett D, Hieter P, Vogelstein B, Kinzler K. Characterization of the yeast transcriptome. Cell, 1997, 88: 243-251.

[8]Jr T C, Figueira A. Serial analysis of gene expression in sugarcane (Saccharum spp.)leaves revealed alternative C4 metabolism and putative antisense transcripts. Plant Molecular Biology, 2007, 63: 745-762.

[9]李永平, 周村建, 郝  飞. 利用SAGE标签产生长片段cDNA应用于白念珠菌基因识别. 第三军医大学学报, 2005, 27(20): 2028-2030.

Li Y P, Zhou C J, Hao F. Identification of Candida albicans genes with cDNA technique from LongSAGE tags. Acta Academiae Medicinae Militaris Tertiae, 2005, 27(20): 2028-2030.(in Chinese)

[10]Malig R, Varela C, Agosin E, Melo F. Accurate and unambiguous tag-to-gene mapping in serial analysis of gene expression. BMC Bioinformat, 2006, 7: 487.

[11]滕晓坤, 肖华胜. 基因芯片与高通量DNA测序技术前景分析. 中国科学, 2008, 38(10): 891-899.

Teng X K, Xiao H S. Prospective analysis of the gene chip and high-throughput DNA sequencing technology. Science in China, 2008, 38(10): 891-899. (in Chinese)

[12]Shendure J, Ji H. Next-generation DNA sequencing. Nature Biotechnology, 2008, 26(10): 1135-1145.

[13]Brown P O, Botstein D. Exploring the new world of the genome with DNA microarrays. Nature Genetics, 1999, 21(1): 33-37.

[14]梁晓英, 郭 娜, 金 晶, 邓旭明, 于 录. 麝香草酚对酿酒酵母表达谱影响的研究. 青岛农业大学学报: 自然科学版, 2009, 26(3): 177-180.

Liang X Y, Guo N, Jin J, Deng X M, Yu L. Genome-wide expression profile of Saccharomyces Cerevisiae induced by Chinese Medicinal Monomer thymol. Journal of Qingdao Agricultural University: Natural Science, 2009, 26(3): 177-180. (in Chinese)

[15]李 凌,马文丽. DNA芯片技术研究进展. 中国生物化学与分子生物学报, 2000, 16(2): 151-155.

Li L, Ma W L. Advances in DNA chip technology. Chinese Journal of Biochemistry and Molecular Biology, 2000, 16(2): 151-155.(in Chinese)

[16]张  岩, 张  亮, 周一鸣, 赵艳君, 果德安. 用酿酒酵母全基因组DNA芯片研究盐酸小檗碱的药理作用机制. 中国中西医结合杂志, 2003, 23(1): 48-53.

Zhang Y, Zhang L, Zhou Y M, Zhao Y J, Guo D A. Study on pharmacological action mechanism of berberine chloride by genome-wide expression profiling of Saccharomyces cerevisiae. Chinese Journal of Integrated Traditional and Western Medicine, 2003, 23(1): 48-53. (in Chinese)

[17]Kell D B, Brown M, Davey M H. Metabolic footprinting and systems biology: the medium is the message. Nature Reviews Microbiology, 2005, 3(7): 557-565.

[18]Mapelli V, Olsson L, Nielsen J. Metabolic footprinting in microbiology: methods and applications in functional genomics and biotechnology. Trends in Biotechnology, 2008, 26(9): 490-497.

[19]Buchholz A, Hudebaus J, Wandrey C, Takors R. Metabolomics: quantification of intracellular metabolite dynamics. Biomolecular Engineering, 2002, 19(1): 5-15.

[20]Dalluge J J, Smith S, Sanchez-Riera F, McGuirea C, Hobsona R. Potential of fermentation profiling via rapid measurement of amino acid metabolism by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2004, 1043(1): 3-7.

[21]O’Hagan S, Dunn W B, Brown M, Knowles J D, Kell D B. Closed-loop, multiobjective optimization of analytical instrumentation: gas chromatography/time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentations. Analytical Chemistry, 2005, 77(1): 290-303.

[22]Boersma M G, Solyanikova I P, Van Berkel W J H, Vervoort J, Golovleva L A, Rietjens I M C M. F-19 NMR metabolomics for the elucidation of microbial degradation pathways of fluorophenols. Journal of Industrial Microbiology & Biotechnology, 2001, 26(1/2): 22-34.

[23]Allen J, Davey H M, Broadhurst D, Rowland J J, Oliver S G, Kell D B. Discrimination of modes of action of antifungal substances by use of metabolic footprinting. Applied and Environmental Microbiology, 2004, 70(10): 6157-6165.

[24]Pope G A, MacKenzie D A, Defernez M, Aroso M A M M, Fuller L J, Mellon F A, Dunn W B, Brown M, Goodacre R, Kell D B, Marvin M E, Louis E J, Roberts I N. Metabolic footprinting as a tool for discriminating between brewing yeasts. Yeast, 2007, 24(8): 667-679.

[25]Mas S, Villas-Bôas S G, Hansen M E, Åkesson M, Nielsen J. A comparison of direct infusion MS and GC-MS for metabolic foot-printing of yeast mutants. Biotechnology Bioengineering, 2007, 96(5): 1014-1022.

[26]Stephanopoulos G, Vallino J J.  Network rigidity and metabolic engineering in metabolite overproduction. Science New Serials, 1991, 252(5013): 1675-1681.

[27]陈  洵, 周世奇, 陈  涛, 王庆昭, 邹少兰, 赵学明. 功能基因组学与代谢工程:微生物菌种改进与生物过程优化. 化工学报, 2006, 57(8): 1792-1801.

Chen X, Zhou S Q, Chen T, Wang Q Z, Zou S L, Zhao X M. Functional genomics and metabolic engineering: microbial strain improvement and bioprocess optimization. Journal of Chemical Industry and Engineering, 2006, 57(8): 1792-1801. (in Chinese)

[28]闫永亮, 刘宏娟, 张建安. 代谢工程在生物丁醇生产中的应用及研究进展. 现代化工, 2012, 32(4): 25-31.

Yan Y L, Liu H J, Zhang J A. Application and research progress of metabolic engineering in butanol production. Modern Chemical Industry, 2012, 32(4):25-31. (in Chinese)

[29]Steen E J, Chan R, Prasad N, Myers S, Petzold C J, Redding A, Ouellet M, Keasling J D. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microbial Cell Factories, 2008, 7: 36.

[30]张晓阳, 杜风光, 池小琴, 王品美, 郑道琼, 吴雪昌. 代谢工程与全基因组重组构建酿酒酵母抗逆高产乙醇菌株. 中国生物工程杂志, 2011, 31(7): 91-97.

Zhang X Y, Du F G, Chi X Q, Wang P M, Zheng D Q, Wu X C. Construction of Saccharomyces cerevisiae strains improved stress tolerance and ethanol fermentation performance through metabolic engineering and genome recombination. China Biotechnology, 2011, 31(7): 91-97. (in Chinese)

[31]Pizarro F, Vargas F A, Agosin E. A systems biology perspective of wine fermentations. Yeast, 2007, 24: 977-991.

[32]Bisson L F, Waterhouse A L, Ebeler S E, Andrew Walker M, Lapsley J T. The present and future of the international wine industry. Nature, 2002, 418: 696-699.

[33]Brochado A, Matos C, Møller B L, Hansen J, Mortensen U H, Patil K R. Improved vanillin production in baker's yeast through in silico design. Microbial Cell Factories, 2010, 9: 84.

[34]Gong J X, Zheng H Z, Wu Z J, Chen T, Zhao X M. Genome shuffling: progress and applications for phenotype improvement. Biotechnology Advances, 2009, 27(6): 996-1005.

[35]郭雪娜, 何秀萍, 傅秀辉, 张博润. 工业酵母菌的遗传修饰研究进展及其应用前景. 中国生物工程杂志, 2003, 23(10): 47-51.

Guo X N, He X P, Fu X H, Zhang B R. Prospect of genetically modified industrial yeasts for application. Progress in Biotechnology, 2003, 23(10): 47-51. (in Chinese)

[36]Coulon J, Husnik J I, Inglis D L, van der Merwe G K, Lonvaud A, Erasmus D J, van Vuuren H J J. Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine. American Journal of Enology and Viticulture, 2006, 57(2): 113-124.

[37]Maturano Y P, Leticia A, Rodríguez A, Toro M E, Nally M C, Vallejo M, Lucía I. Multi-enzyme production by pure and mixed cultures of Saccharomyces and non-Saccharomyces yeasts during wine fermentation. International Journal of Food Microbiology, 2012, 155: 43-50.

[38]Pérez G, Farina L, Barquet M, Boido E, Gaggero C, Dellacassa E, Carrau F. A quick screening method to identify β-glucosidase activity in native wine yeast strains: application of esculin glycerol agar (EGA) medium. World Journal of Microbiology and Biotechnology, 2011, 27: 47-55.

[39]Maria D B, Gianluca B, Francesco G, Mariana T, Maria T, Francesco G. An optimized procedure for the enological selection of non- Saccharomyces starter cultures. Antonie van Leeuwenhoek, 2011, 99: 189-200.

[40]Liolios K, Tavernarakis N, Hugenholtz P, Kyrpides N C. The Genomes On Line Database (GOLD)v.2: a monitor of genome projects worldwide. Nucleic Acids Research, 2006, 34: 332-334.

[41]Marks V D, Ho Sui S J, Erasmus D, van der Merwe G K, Brumm J, Wasserman W W, Bryan J, van Vuuren H J J. Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Research, 2008, 8(1): 35-52.

[42]Varela C, Pizarro F, Agosin E. Biomass content governs fermentation rate in nitrogen-deficient wine musts. Applied and Environmental Microbiology, 2004, 70: 3392-3400.

[43]Varela C, Cardenas J, Melo F, Agosin E. Quantitative analysis of wine yeast gene expression pro?les under winemaking conditions. Yeast, 2005, 22: 369-383.

[44]Portales-Casamar E, Thongjuea S, Kwon A T, Arenillas D, Zhao X, Valen E, Yusuf D, Lenhard B, Wasserman W W, Sandelin A. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles. Nucleic Acids Research, 2010, 38: 105-110.

[45]Liao J C, Boscolo R, Yang Y L, Tran L M, Sabatti C, Roychowdhury V P. Network component analysis: reconstruction of regulatory signals in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 15522-15527.

[46]Ye C, Galbraith S J, Liao J C, Eskin E. Using network component analysis to dissect regulatory networks mediated by transcription factors in yeast. PLoS Computational Biology, 2009, 5(3): 1-12.

[47]Boer V M, deWinde J H, Pronk J T, Piper M D W. The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulphur. Journal of Biological Chemistry, 2003, 278(5): 3265-3274.

[48]张秋美, 赵心清, 姜如娇, 李  倩, 白凤武. 酿酒酵母乙醇耐性的分子机制及基因工程改造. 生物工程学报, 2009, 4: 481-487.

Zhang Q M, Zhao X Q, Jiang R J, Li Q, Bai F W. Ethanol tolerance in yeast:molecular mechanisms and genetic engineering. Chinese Journal of Biotechnology, 2009, 4: 481-487. (in Chinese)

[49]郭  钦, 张  伟, 阮  晖, 何国庆. 酿酒酵母表面展示表达系统及应用. 中国生物工程杂志, 2008, 28(12): 116-122.

Guo Q, Zhang W, Ruan H, He G Q. Cell-surface display expression system of Saccharomyces cerevisiae and its applications. China Biotechnology, 2008, 28(12): 116-122. (in Chinese)

[50]Pretorius I S, Bauer F F. Meeting the consumer challenge through genetically customized wine-yeast strains. Trends in Biotechnology, 2002, 20(10): 426-432.

[51]Lane P G, Oliver S G, Butler P R. Analysis of a continuous-culture technique for the selection of mutants tolerant to extreme environmental stress. Biotechnology Bioengineering, 1999, 65: 397-406.

[52]Ferea T L, Botstein D, Brown P O, Frank Rosenzweig R. Systematic changes in gene expression patterns following adaptive evolution in yeast. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(17): 9721-9726.
[1] ZHANG YaWei, LIU QiuXia, ZHU DanDan, FAN XiaoLin, REN Tao, ZHANG LiMei, LI XiaoKun, CONG RiHuan, LU JianWei. Effects of Different Special Controlled Release Urea Dosages on Yield and Nitrogen Uptake of Oilseed Rape [J]. Scientia Agricultura Sinica, 2018, 51(1): 139-148.
[2] WU Yan-qing, ZHAO Da-qiu, TAO Jun. Analysis of Codon Usage Pattern of Paeonia lactiflora Genes Regulating Flower Color and Its Influence Factors [J]. Scientia Agricultura Sinica, 2016, 49(12): 2368-2378.
[3] ZOU Xing-qi,ZHAO Qi-zu,FAN Yun-feng,ZHU Yuan-yuan,WANG Qin,XU Lu,FAN Xue-zheng,NING Yi-bao
. Construction of the Full Length Infectious cDNA Clones of CSFV C Strain and Virus Rescue
[J]. Scientia Agricultura Sinica, 2011, 44(2): 409-416 .
[4] HUANG Xian-qing,WANG Yu-fen,ZHAO Gai-ming,XIE Hua,GAO Xiao-ping,SUN Ling-xia,LI Miao-yun1,ZHANG Qiu-hui1,ZHAO Guang-hui
. Identification of A Microorganism Strain Isolated from the Corn Sausage by 16S rDNA Sequence Analysis and Optimization of Preservative Mixture
[J]. Scientia Agricultura Sinica, 2010, 43(24): 5112-5120 .
[5] XIANG Lin,CHEN Long-qing. Adavances in Genetic Engineering of Floral Scent [J]. Scientia Agricultura Sinica, 2009, 42(6): 2076-2084 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!