Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (16): 3249-3255.doi: 10.3864/j.issn.0578-1752.2012.16.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

A New Strategy for Crop Improvement Through Modification of Phytochrome Signalling Pathways

 ZHAN  Ke-Hui, LI  Zhi-Yong, HOU  Pei, XI  Yu-Lin, XIAO  Yang, MENG  Fan-Hua, YANG  Jian-Ping   

  1. 1.河南农业大学农学院, 郑州 450002
    2.中国农业科学院作物科学研究所,北京100081
    3.中国农业科学院研究生院,北京100081
    4.重庆邮电大学生物信息学院,重庆400065
  • Received:2012-03-16 Online:2012-08-15 Published:2012-04-19

Abstract: In this review, the mechanisms that phytochromes controlling of seedling photomorphogenesis in model plant Arabidopsis were introduced. The present research works on light signaling pathways, mutant discoveries and the relations with yield traits in the grasses were summarized. Overexpression and/or loss-of-function mutants of phytochromes in wheat and maize lead to significant variations in plant height, flowering time and shade avoidance responses. Genetics, biochemical and molecular analyses on these variations related to yield traits will help us develop a new strategy for crop improvement through the modification of light signalling pathways.

Key words: phytochromes, phytochrome signalling pathway, crop improvement, photomorphogenesis

[1] Quail P H. Phytochrome photosensory signalling networks. Nature Reviews Molecular Cell Biology, 2002, 3: 85-93.

[2] Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annual Review of Plant Biology, 2008, 59: 281-311.

[3] Li J, Li G, Wang H, Deng X W. Phytochrome Signaling Mechanisms. The Arabidopsis Book. The American Society of Plant Biologists, 2011. http://www.bioone.org/doi/full/10.1199/tab.0148.

[4] McNellis T W, Deng X W. Light control of seedling morphogenetic pattern. The Plant Cell, 1995, 7: 1749-1761.

[5] Kendrick R E, Kronenberg G H M. Photomorphogenesis in Plants. Dordrecht, The Netherlands: Kluwer Academic Press, 1994.

[6] Briggs W R, Olney M A. Photoreceptors in plant photomorphogenesis to date, five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiology, 2001, 125: 85-88.

[7] Lin C. Blue light receptors and signal transduction. The Plant Cell, 2002,14 (suppl.): 207-225.

[8] Gyula P, Schafer E, Nagy F. Light perception and signalling in higher plants. Current Opinion in Plant Biology, 2003, 6: 446-452.

[9] Alba R, Kelmenson P M, Cordonnier-Pratt M M, Pratt L H. The phytochrome gene family in tomato and the rapid differential evolution of this family in angiosperms. Molecular Biology and Evolution, 2000, 17: 362-373.

[10] Sharrock R A, Clack T, Goosey L. Differential activities of the Arabidopsis PHYB/D/E phytochromes in complementing phyB mutant phenotypes. Plant Molecular Biology, 2003, 52: 135-142.

[11] Neff M M, Fankhauser C, Chory J. Light, an indicator of time and place. Genes and Development, 2000, 14: 257-271.

[12] Nagatani A, Reed J W, Chory J. Isolation and initial characterization of Arabidopsis mutants that are deficient in phytochrome A. Plant Physiology, 1993, 102: 269-277.

[13] Whitelam G C, Johnson E, Peng J, Carol P, Anderson M L, Cowl J S, Harberd N P. Phytochrome a null mutants of Arabidopsis display a wild–type phenotype in white light. The Plant Cell, 1993, 5: 757-768.

[14] Reed J W, Nagpal P, Poole D S, Furuya M, Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. The Plant Cell, 1993, 5: 147-157.

[15] Frankin K A, Davis S J, Stoddart W M, Vierstra R D, Whitelam G C. Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis. The Plant Cell, 2003, 15: 1981-1989.

[16] Monte E, Alonso J M, Ecker J R, Zhang Y, Li X, Young J, Austin-Phillips S, Quail P H. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. The Plant Cell, 2003, 15: 1962-1980.

[17] Aukerman M J, Hirschfeld M, Wester L, Weaver M, Clack T, Amasino R M, Sharrock R A. A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. The Plant Cell, 1997, 9: 1317-1326.

[18] Devlin P F, Robson P R, Patel S R, Goosey L, Sharrock R A, Whitelam G C. Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Plant Physiology, 1999, 119: 909-915.

[19] Devlin P F, Patel S R, Whitelam G C. Phytochrome E influences internode elongation and flowering time in Arabidopsis. The Plant Cell, 1998, 10: 1479-1487.

[20] Chen M, Galvão R M, Li M, Burger B, Bugea J, Bolado J, Chory J. Arabidopsis HEMERA/pTAC12 initiates photomorphogenesis by phytochromes. Cell, 2010,141: 1230-1240.

[21] Jang I C, Yang S W, Yang J Y, Chua N H. Independent and interdependent functions of LAF1 and HFR1 in phytochrome A signaling. Genes and Development, 2007, 21: 2100-2111.

[22] Saijo Y, Sullivan J A, Wang H, Yang J, Shen Y, Rubio V, Ma L, Hoecker U, Deng X W. The COP1–SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes and Development, 2003, 17: 2642-2647.

[23] Seo H S, Yang J Y, Ishikawa M, Bolle C, Ballesteros M L, Chua N H. LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature, 2003, 423: 995-999.

[24] Yang J, Lin R, Sullivan J, Hoecker U, Liu B, Xu L, Deng X W, Wang H. Light regulates COP1–mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. The Plant Cell, 2005, 17: 804-821.

[25] Yang J, Lin R, Hoecker U, Liu B, Xu L, Wang H Y. Repression of light signaling by Arabidopsis SPA1 involves post–translational regulation of HFR1 protein accumulation. The Plant Journal, 2005, 43:131-141.

[26] Zhu D, Maier A, Lee J H, Laubinger S, Saijo Y, Wang H, Qu L J, Hoecker U, Deng X W. Biochemical characterization of Arabidopsis complexes containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA proteins in light control of plant development. The Plant Cell, 2008, 20: 2307-2323.

[27] Sullivan J A, Shirasu K, Deng X W. The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nature Reviews Genetics, 2003, 4: 948-958.

[28] Smith H. Physiological and ecological function within the phytochrome family, Annual Review of Plant Physiology and Plant Molecular Biology, 1995, 46: 289-315.

[29] Hanumappa M, Pratt L H, Cordonnier-Pratt M M, Deitzer G F. A photoperiod-insensitive barley line contains a light-labile phytochrome B. Plant Physiology, 1999, 199: 1033-1040.

[30] Childs K L, Miller F R, Cordonnier-Pratt M M, Pratt L H, Morgan P W, Mullet J E. The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiology, 1997, 113: 611-619.

[31] Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K. Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). The Plant Journal, 2000, 22: 391-399.

[32] Sawers R J, Linley P J, Farmer P R, Hanley N P, Costich D E, Terry M J, Brutnell T P. Elongated mesocotyl1, a phytochrome-deficient mutant of maize. Plant Physiology, 2002, 130: 155-163.

[33] Christensen A H, Quail P H. Structure and expression of a maize phytochrome-encoding gene. Gene, 1989, 85: 381-390.

[34] Gaut B S, Doebley J F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proceedings of the National Academy of Sciences of the USA, 1997, 94: 6809-6814.

[35] Sheehan M J, Farmer P R, Brutnell T P. Structure and expression of maize phytochrome family homeologs. Genetics, 2004, 167: 1395-1405.

[36] 马燕斌,李 壮,蔡应繁,周 朋,肖 阳,黄玉碧,付凤玲,潘光堂,杨克诚,杨建平. 玉米2个光敏色素A基因的克隆、蛋白结构与光诱导表达模式. 中国农业科学, 2010, 43(10): 1985-1993.

Ma Y B, Li Z, Cai Y F, Zhou P, Xiao Y, Huang Y B, Fu F L, Pan G T, Yang K C, Yang J P. Isolation and primary analysis of protein structures and expression patterns responding to different light treatments of two phytochrome A genes in maize (Zea mays L.). Scientia Agricultura Sinica, 2010, 43(10): 1985-1993. (in Chinese)

[37] 李  壮, 马燕斌, 蔡应繁, 吴锁伟, 肖 阳, 孟凡华, 付风铃, 黄玉 碧, 杨建平. 小麦光敏色素基因TaPhyB3的克隆和表达分析. 作物学报, 2010, 36(5): 779-787.

Li Z, Ma Y B, Cai Y F, Wu S W, Xiao Y, Meng F H, Fu F L, Huang Y B, Yang J P. Cloning and expression analysis of TaPhyB3 in Triticum aestivum. Acta Agronomica Sinica, 2010, 36(5): 779-787. (in Chinese)

[38] Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes and Development, 2002, 16: 2006-2020.

[39] Finlayson S A, Lee I J, Mullet J E, Morgan P W. The mechanism of rhythmic ethylene production in sorghum. The role of phytochrome B and simulated shading. Plant Physiology, 1999, 119: 1083-1089.

[40] Morelli G, Ruberti I. Shade avoidance responses. Driving auxin along lateral routes, Plant Physiology, 2000, 122: 621-626.

[41] Pierik R, Cuppens M L, Voesenek L A, Visser E J. Interactions between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in tobacco. Plant Physiology, 2004, 136: 2928-2936.

[42] Carabelli M, Morelli G, Whitelam G, Ruberti I. Twilight-zone and canopy shade induction of the Athb-2 homeobox gene in green plants. Proceedings of the National Academy of Sciences of the USA, 1996, 93: 3530-3535.

[43] Salter M G, Franklin K A, Whitelam G C. Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature, 2003, 426: 680-683.

[44] Cerdan P D, Chory J. Regulation of flowering time by light quality. Nature, 2003, 423: 881-885.

[45] Duek P D, Fankhauser C. HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signaling. The Plant Journal, 2003, 34: 827-836.

[46] Sessa G, Carabelli M, Sassi M, Ciolfi A, Possenti M, Mittempergher F, Becker J, Morelli G, Ruberti I. A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis. Genes and Development, 2005, 19: 2811-2815.

[47] Jang I C, Yang J Y, Seo H S, Chua N H. HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes and Development, 2005, 19: 593-602.

[48] Duvick D N. What is yield? P332-338.// Edmeades G O. Developing Drought and Low N-Tolerant Maize. Proceedings of a Symosium, March 25-29, 1996, CIMMYT, EI Batan, Mexico.

[49] Clough R C, Casal J J, Jordan E T, Christou P, Vierstra R D. Expression of functional oat phytochrome A in transgenic rice. Plant Physiology, 1995, 109: 1039-1045.

[50] Robson P R, McCormac A C, Irvine A S, Smith H. Genetic engineering of harvest index in tabacco through overexpression of a phytochrome gene. Nature Biotechnology, 1996, 14: 995-998.

[51] Shlumukov L R, Barro F, Barcelo P, Lazzeri P, Smith H. Establishment of far-red high irradiance responses in wheat through transgenic expression of an oat phytochrome A gene. Plant Cell and Environment, 2001, 24: 703-712.

[52] Kong S G, Lee D S, Kwak S N, Kim J K, Sohn J K, Kim I S. Characterization of sunlight-grown transgenic rice plants expressing Arabidopsis phytochrome A. Molecular Breeding, 2004, 14: 35-45.

[53] Tokatlidis I S, Koutroubas S D. A review of maize hybrids dependence on high plant populations and its implications for crop yield stability. Field Crops Research, 2004, 88: 103-114.

[54] Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant giberellin response modulators. Nature, 1999, 400: 256-261.

[55] Boylan M T, Quil P H. Oat phytochrome is biologically active in transgenic tomatoes. The Plant Cell, 1989, 1: 765-773.

[56] Nagatani A, Kay S A, Deak M, Chua N H, Furuya M. Rice type I phytochrome regulates hypocotyl elongation in transgenic tobacco seedlings. Proceedings of the National Academy of Sciences of the USA, 1991, 88: 5207-5211.

[57] Thiele A, Herold M, Lenk I, Quail P H, Gatz C. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiology, 1999, 120: 73-81.

[58] Garg A K, Sawers R J, Wang H, Kim J K, Walker J M, Brutnell TP, Parthasarathy M V, Vierstra R D, Wu R J. Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta, 2006, 223: 627-636.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!