Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (7): 1274-1284.doi: 10.3864/j.issn.0578-1752.2012.07.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Study on Turbulent Heat Flux over Soybean Field in the Sanjiang Plain

 JIA  Zhi-Jun, HUANG  Yao   

  1. 1.成都信息工程学院/高原大气与环境四川省重点实验室,成都 610225
    2.中国科学院植物研究所,北京 100093
  • Received:2011-10-11 Online:2012-04-01 Published:2012-03-18

Abstract: 【Objective】 The quantification of variation regularity of surface turbulent heat flux was studied in order to provide a basis for clarifying the energy balance in soybean field. 【Method】 Based on eddy covariance data in soybean field in the Sanjiang Plain, the diurnal and seasonal variation of turbulent heat flux, water balance and energy partitioning were analyzed. 【Result】Diurnal variation curves of latent and sensible heat flux were both obviously single peaked in soybean fields. Seasonal variation of latent heat flux was also clear. Latent heat flux generally reached the maximum during the end of June and early July, which was strongly linearly positive dependent on net radiation. However, when the precipitation became small, latent heat flux was also affected by it. The sensible heat flux showed a declining trend, which was also strongly linearly positive dependent on net radiation, but both sensible heat flux and Hs/Rn are strongly negative dependent on precipitation. Total precipitation was obviously greater than total evapotranspiration during the growing season of soybean, while uneven distribution of precipitation made the water budget become deficit in short term. The characteristics of seasonal variation of Bowen ratio was not exactly same from 2005 to 2007, and Bowen ratio had a strong negative relationship with monthly precipitation and leaf area index. 【Conclusion】 Latent and sensible heat flux in soybean field showed a clear single peak at the diurnal scale. Surface water is surplus and latent heat flux, sensible heat flux and energy partition in soybean field is determined by net radiation, precipitation and plant development.

Key words: soybean field, latent heat flux, sensible heat flux, water balance, energy partition

[1]Bittelli M, Ventura F, Campbell G S, Snyder R L, Gallegati F, Risa P R. Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils. Journal of Hydrology, 2008, 362(3-4): 191-205.

[2]Dickinson R E, Henderson-Sellers A, Rosenzweig C, Sellers P J. Evapotranspiration models with canopy resistance for use in climate models: A review. Agricultural and Forest Meteorology, 1991, 54(2-4): 373-388.

[3]Unland H E, Houser P R, Shuttleworth W J, Yang Z L. Surface flux measurement and modeling at a semi-arid Sonoran desert site. Agricultural and Forest Meteorology, 1996, 82(1-4): 119-153.

[4]高志球, 卞林根, 陆龙骅, 丁国安. 水稻不同生长期稻田能量收支、CO2通量模拟研究. 应用气象学报, 2004, 15(2): 129-140.

Gao Z Q, Bian L G, Lu L H, Ding G A. Modeling of energy and CO2 fluxes during different growth periods over rice field by using SIB2. Journal of Applied Meteorological Science, 2004, 15(2): 129-140.(in Chinese)

[5]Anderson D E, Verma S B, Rosenberg N J. Eddy correlation measurements of CO2, latent heat and sensible heat fluxes over a crop surface. Boundary Layer Meteorology, 1984, 29 (3): 263-272.

[6]Hernandez-Ramirez G, Hatfield J L, Prueger J H, Sauer T J. Energy balance and turbulent flux partitioning in a corn-soybean rotation in the Midwestern US. Theoretical and Applied Climatology, 2010, 100(1-2): 79-92.

[7]Suyker A E, Verma S B. Evapotranspiration of irrigated and rainfed maize-soybean cropping systems. Agricultural and Forest Meteorology, 2009, 149(3-4): 443-452.

[8]Polonio D, Soler M R. Surface fluxes estimation over agricultural areas: Comparison of methods and the effects of land surface inhomogeneity. Theoretical and Applied Climatology, 2000, 67(1-2): 65-79.

[9]李祎君, 许振柱, 王云龙, 周 莉, 周广胜. 玉米农田水热通量动态与能量闭合分析. 植物生态学报, 2007, 31(6): 1132-1144.

Li Y J, Xu Z Z, Wang Y L, Zhou L, Zhou G S.Latent and sensible heat fluxes and energy balance in a maize agroecosystem. Journal of Plant Ecology, 2007,31(6): 1132-1144. (in Chinese)

[10]郭家选, 梅旭荣, 林 琪, 赵全胜, 卢志光. 冬小麦农田暂时水分胁迫状况下水、热通量日变化. 生态学报, 2006, 26(1): 130-137.

Guo J X, Mei X R, Lin Q, Zhao Q S, Lu Z G. Diurnal variation of water and heat flux under transient water stress in a winter wheat field. Acta Ecologica Sinica, 2006, 26(1): 130-137. (in Chinese)

[11]李胜功, 赵哈林, 何宗颖, 常学礼, 原园芳信. 灌溉与无灌溉大豆田的热量平衡. 兰州大学学报:自然科学版,1997,33(1): 98-104.

Li S G, Zhao H L, He Z Y, Chang X L, Yoshinobu H. Heat budgets of irrigated and non-irrigated soybean fields at Naiman, Inner Mongolia. Journal of Lanzhou University:Natural Sciences, 1997, 33(1): 98-104. (in Chinese)

[12]Baldocchi D D, Falge E, Gu L H, Olson R, HollingerD Y, Running S W, Anthoni P, Bernhofer C, Davis K J, Evans R, Fuentes J, Goldstein A, Katul G, Law B E, Lee X, Malhi Y, Meyers T P, Munger J W, Oechel W C, Paw U K T, Pilegaard K, Schmid H P, Valentini R, Verma S, Vesala T, Wilson K B, Wofsy S C. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 2001, 82: 2415-2434.

[13]郭家选, 梅旭荣, 卢志光, 赵全胜. 测定农田蒸散的涡度相关技术. 中国农业科学, 2004, 37(8): 1172-1176.

Guo J X, Mei X R, Lu Z G, Zhao Q S. Field evapotranspiration measurement based on eddy covariance technology. Scientia Agricultura Sinica, 2004, 37(8): 1172-1176. (in Chinese)

[14]李思恩, 康绍忠, 朱治林, 杜太生, 佟 玲, 李伏生. 应用涡度相关技术监测地表蒸发蒸腾量的研究进展. 中国农业科学 2008, 41(9): 2720-2726.

Li S E, Kang S Z, Zhu Z L, Du T S, Tong L, Li F S. Research progress of measurement of land surface evapotranspiration based on eddy covariance technology. Scientia Agricultura Sinica, 2008, 41(9): 2720-2726. (in Chinese)

[15]Foken T H, Wichura B. Tools for quality assessment of surface based flux measurement. Agricultural and Forest Meteorology, 1996, 78(1): 83-105.

[16]Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Grainer A, Grunwald T, Hollinger D, Jensen N, Katul G, Keronen P, Kowalski A, Ta L C, Law B E, Meyers T, Moncrieff J, Moors E, Munger J W, Pilegaard K, Rannik U, Rebmann C, Suyker A E, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S. Gapfilling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 2001, 107(1): 43-69.

[17]Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Grainer A, Gross P, Grunwald T, Hollinger D, Jensen N, Katul G, Keronen P, Kowalski A, Ta L C, Law B E, Meyers T, Moncrieff J, Moors E, Munger J W, Pilegaard K, Rannik U, Rebmann C, Suyker A E, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S. Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology, 2001, 107(1): 71-77.

[18]Liu W T. Moisture and latent heat flux variabilities in the tropical Pacific derived from satellite data. Journal of Geophysical Research, 1988, 93 (6): 6749-6760.

[19]Alados I, Foyo-Moreno I, Oimo F J, Alados-Arboledas L. Relationship between net radiation and solar radiation semi-arid shrub-land. Agricultural and Forest Meteorology, 2003, 116(3-4): 221-227.

[20]Baldocchi D D. A comparative study of mass and energy exchange rates over a closed C3 (wheat) and an open C4 (corn) crop: I. The partitioning of available energy into latent heat and sensible heat exchange. Agricultural and Forest Meteorology, 1994, 67(3-4): 191-220.

[21]Wilson K B, Baldocchi D D. Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agricultural and Forest Meteorology, 2000, 100(1): 1-18

[22]Kurbatova J, Arenth A, Vygodskaya N N, Kolle O, Varlargin A V, Milyukova I M, Tchebakova N M, Schulze E D, Lloyd J. Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog I. Interseasonal and interannual variability of energy and latent heat fluxes during the snowfree period. Tellus Series B-Chemical and Physical Meteorology, 2002, 54(5): 497-513.

[23]Mahrt L, Vickers D. Relationship of area-averaged carbon dioxide and water vapor fluxes to atmospheric variables. Agricultural and Forest Meteorology, 2002, 112(3-4): 195-202.

[24]Yu W Y, Zhou G S, Chi D C, Zhou L. Evapotranspiration of Phragmites communis community in Panjin wetland and its control factors. Acta Ecologica Sinica, 2008, 28(9):4594-4601.

[25]Karam F, Masaad R, Sfeir T, Rouphael Y. Evapotranspiration and seed yield of field grown soybean under deficit irrigation conditions. Agricultural Water Management, 2005, 75(3): 226-244.

[26]Sincik M, Candogan B N, Demirtas C, Büyükcangaz H, Yazgan S, Göksoy A T. Deficit irrigation of soybean [Glycine max (L.) Merr.] in a sub-humid climate. Journal of Agronomy and Crop Science, 2008, 194(3): 200-205.

[27]张 果, 周广胜, 阳伏林. 内蒙古温带荒漠草原生态系统水热通量动态. 应用生态学报, 2010,21(3): 597-603.

Zhang G, Zhou G S, Yang F L. Dynamics of sensible and latent heat fluxes over a temperate desert steppe ecosystem in Inner Mongolia. Chinese Journal of Applied Ecology, 2010, 21(3): 597-603. (in Chinese)

[28]王 慧, 胡泽勇, 马伟强, 李栋梁. 鼎新戈壁下垫面近地层小气候及地表能量平衡特征季节变化分析. 大气科学, 2008, 32(6): 1458-1470.

Wang H, Hu Z Y, Ma W Q, Li D L. The seasona1 variation of microclimate chracteristics and energy transfer in the surface layer over Dingxin Gobi. Chinese Journal of Atmospheric Sciences, 2008, 32(6): 1458-1470. (in Chinese)

[29]高素华, 郭建平. 高CO2浓度条件下小麦、大豆对土壤水分胁迫的响应. 环境科学学报, 2000, 20(5):649-650.

Gao S H, Guo J P. The response of winter wheat and soybean to drought stress under the increased CO2 concentration. Acta Scientiae Circumstantiae, 2000, 20(5):649-650. (in Chinese)

[30]Ohashi Y, Nakayama N, Saneoka H, Fujita K. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biologia Plantarum, 2006, 50(1): 138-141

[31]张新萍, 陈玉琪, 陈若礼, 张存岭. 濉溪县夏大豆生长发育与降水关系分析. 中国农业气象, 2006, 27(3):233-236.

Zhang X P, Chen Y Q, Chen R L, Zhang C L. Analysis of relationship between precipitation and growth and development of summer soybean in Suixi county. Chinese Journal of Agrometeorology, 2006,  27(3): 233-236. (in Chinese)

[32]王毅勇, 杨 青, 刘振乾. 三江平原典型低湿地雨养农田水分特征. 中国生态农业学报, 2001, 9(1):43-45.

Wang Y Y, Yang Q, Liu Z Q. Water charecteristics of typical wetlands in the Sanjiang Plain. Chinese Journal of Eco-Agriculture, 2001, 9(1):43-45. (in Chinese)

[33]Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law B E, Kowalski A, Meyers T, Moncrieff J, Monson R,  Oechel W, Tenhunen J, Valentini R, Verma S. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 2002, 113(1-4): 223-243.

[34]Hatfield J L, Prueger J H, Kustas W P. Spatial and temporal variation of energy and carbon fluxes in central Iowa. Agronomy Journal, 2007, 99(1): 285-296.

[35]Iritz Z, Lindroth A. Energy partitioning in relation to leaf area development of short-ratation willow coppice. Agricultural and Forest Meteology, 1996, 81(1-2):119-130.
[1] HOU Hui-zhi, Lü Jun-feng, GUO Tian-wen, ZHANG Guo-ping, DONG Bo, ZHANG Xu-cheng. Effects of Whole Field Soil-Plastic Mulching on Spring Wheat  Water Consumption, Yield, and Soil Water Balance in Semiarid Region [J]. Scientia Agricultura Sinica, 2014, 47(22): 4392-4404.
[2] QIN Xin, LIU Ke, ZHOU Li-Li, ZHOU Shun-Li, LU Lai-Qing, WANG Run-Zheng. Characteristics of Annual Water Utilization in Winter Wheat- Summer Maize Rotation System in North China Plain [J]. Scientia Agricultura Sinica, 2012, 45(19): 4014-4024.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!