Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (18): 3868-3876.doi: 10.3864/j.issn.0578-1752.2011.18.018

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Calibration of Partial Anatidae Molecular Clocks

MENG  Dong-Mei, WANG  Ji-Wen   

  1. 1. 四川农业大学动物科技学院
    2. 菏泽学院制药工程系
  • Received:2010-07-26 Revised:2010-10-24 Online:2011-09-15 Published:2010-11-01

Abstract: 【Objective】The divergence times of Anatidae were estimated in order to investigate their genetic background. 【Method】 The mitochondrial cytochrome b (Cyt b) gene sequences of 44 individuals in Chinese domestic geese (15 breeds) and European domestic geese (2 breeds) were sequenced. The consensus sequence of Cyt b was obtained from the Anser anser and Anser cygnoides, respectively, together with 13 partial sequences of Cyt b gene in other birds (4 sequences form Galliformes, 9 from Anseriformes ) provided at NCBI, were totally constructed a 15 sequences database for the next step analysis. And the divergence time between Anseriformes and Galliformes was chosen as an anchor point to calibrate the Anatidae molecular clocks using a sequence calibration method. 【Result】The results show that the estimation of the divergence time between Phasianidae and Anatidae is 101.798 MYA (Poisson Model) and 129.461 MYA (Gamma Model). The estimation of divergence time between Anser and Anatinae is 55.1225 MYA (Poisson Model) and 62.5223 MYA (Gamma Model). 【Conclusion】The divergence of the two basal groups(Phasianidae/Anatidae, Anser/Anatinae)took place in the Cretaceous period(146-65 MYA). These results are consistent with the view that avian was originated in the Cretaceous period.

Key words: molecular clock, cytochrome b (Cyt b), Anatidae, divergence time

[1]邱会平, 马俊业. 海绵特异性微生物的分子钟初测及其意义. 微体古生物学报, 2010, 27(3): 205-210.

Qiu H P, Ma J Y. Divergence time estimates of sponge-specific symbacteria and its coevolutionary significance. Acta Micropalaeontologica Sinica, 2010, 27(3): 205-210. (in Chinese)

[2]毛康珊. 广义柏科的生物地理学研究[D]. 兰州: 兰州大学, 2010.

Mao K S. Biogeography of cupressaceae Sensu lato[D]. Lanzhou: Lanzhou University, 2010. (in Chinese)

[3]李春香, 陆树刚, 马俊业, 杨  群. 里白科植物的系统发育和分歧时间估计—基于叶绿体三个基因序列的证据. 古生物学报, 2010, 49(1): 64-72.

Li C X, Lu S G, Ma J Y, Yang Q. Phylogeny and divergence of gleicheniaceae inferred from three plastid genes. Acta Palaeontologica Sinica, 2010, 49(1): 64-72. (in Chinese)

[4]Hao J S, Sun X Y, Shi Q H, Yang Q. Bryozan phylogenetic position and dates of its early divergences. Acta Micropalaeontologica Sinica, 2010, 27(1): 1-12.

[5]赵  亮, 谢本贵, 刘志瑾, 许木启, 李  明. 太湖新银鱼线粒体D-loop和Cyt b片段序列结构与进化速率比较. 动物学杂志, 2010, 45(2): 27-38.

Zhao L, Xie B G, Liu Z J, Xun M Q, Li M. Molecular structure and DNA substitution rate of the mitochondrial control region and cytochrome b in Taihu Salangid, Neosalanx taihuensis. Chinese Journal of Zoology, 2010, 45(2): 27-38. (in Chinese)

[6]杨  群, 丛培允, 孙晓燕, 马俊业, 盖永华, 李春香, 郝家胜, 夏旭华. 谱系年代研究进展. 古生物学报, 2009, 48(3): 364-374.

Yang Q, Cong P Y, Sun X Y, Ma J Y, Gai Y H, Li C X, Hao J S, Xia X H. Advances in phylogenetic chronology. Acta Palaeontologica Sinica, 2009, 48(3): 364-374. (in Chinese)

[7]文陇英, 包新康, 金园庭, 刘廼发. 以线粒体DNA Cyt b 确立红喉雉鹑和黄喉雉鹑的分类地位. 动物分类学报, 2009, 34(2): 265-268.

Wen L Y, Bao X K, Jin Y T, Liu N F. Phylogenetic of tetraophasis obscurus and teteaophasis szechenyii inferrend from mitochondrial cytocrome B gene. Acta Zootaxonomica Sinica, 2009, 34(2): 265-268. (in Chinese)

[8]李  昂, 高天翔, 孙典荣. 中国近海与日本近海白姑鱼线粒体细胞色素b 基因全序列比较分析. 中国水产科学, 2010, 17(6): 1166-1172.

Li A, Gao T X, Sun D R. Comparative analysis of white croaker (Pennahia argentata) based on complete cytochrome b gene sequence in mitochondrial DNA. Journal of Fishery Sciences of China, 2010, 17(6): 1166-1172. (in Chinese)

[9]王福生, 江  东. 应用cpSSR和EST-SSR标记进行柑橘特异种质资源遗传背景研究. 园艺学报, 2010, 37(3): 465-474.

Wang F S, Jiang D. Studies on genetic background of important germplasm resources among citrus based on cpSSR and EST-SSR marker. Acta Horticulturae Sinica, 2010, 37(3): 465-474. (in Chinese)

[10]Kumar S, Hedges S B. A molecular timescale for vertebrate evolution. Nature, 1998, 392(6679): 917-920.

[11]Waddell P J, Cao Y, Hasegawa M, Mindell D P. Assessing the cretaceous superordinal divergence times within birds and placental mammals by using whole mitochondrial protein sequences and extended statistical framework. Systematic Bioogy, 1999, 48(1): 119-137.

[12]Kumar S. Molecular clocks: four decades of evolution. Nature Reviews Genetics, 2005, 6(8): 654-662.

[13]Alström P, Olsson U, Rasmussen P C, Yao C T, Ericson P G P, Sundberg P. Morphological, vocal and genetic divergence in the Cettia acanthizoides complex (Aves: cettiidae). Zoological Journal of the Linnean Society, 2007, 149(3): 437-452.

[14]Drummond A J, Ho S Y W, Phillips M J, Rambaut A. Relaxed phylogenetics and dating with confidence. Public Library of Science (PLoS) Biology, 2006, 4(5): 699-710.

[15]Olson S L, Feduccia A. Presbyornis and the Origin of the Anseriformes (Aves: charadriomorphae). Washington: Smithsonian Institution Press, 1980.

[16]Prager E M, Wilson A C. Congruency of phylogenies derived from different proteins: a molecular analysis of the phylogenetic position of cracid birds. Molecular Evolution, 1976, 9: 45-57.

[17]杨  群, 李春香.  “生命之树”的谱系年代学研究. 科学, 2010, 62(2): 5-7.

Yang Q, Li C X. Study on phylogenetic chronology of tree of life. Science, 2010, 62(2): 5-7. (in Chinese)

[18]Kumar S. PHYLTEST : phylogenetic hypothesis testing software version2.0. Pennsylvania State University, University Park, Pennsylvania, 1996.

[19]Takezaki N, Rzhetsky A, Nei M. Phylogenetic test of the molecular clock and linearized trees. Molecular Biology and Evolution, 1995, 12(5): 823-833.

[20]Felsenstein J. Phylogenies from molecular sequences: inference and reliability. Annual Review of Genetics, 1988, 22: 521-565.

[21]Uyenoyama M K. A generalized least-squares estimate for the origin of sporophytic self-incompatibility. Genetics, 1995, 139: 973-992.

[22]Sanderson M J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics, 2003, 19(2): 301-302.

[23]Thome J L, Kishino H, Painter L S. Estimating the rate of evolution of the rate of molecular evolution. Molecular Biology and Evolution, 1998, 15(12): 1647-1657.

[24]Shields G F. Analysis of mitochondrial DNA of pacific black brant. The Auk, 1990, 107(3): 620-623.

[25]王  文, 施立明. 一种改进的动物线粒体DNA提取方法. 动物学研究, 1993, 14(2): 197-198.

Wang W, Shi L M. An improved method for isolation of animal mitochondrial DNA. Zoolgical Reseach, 1993, 14(2): 197-198. (in Chinese)

[26]Sorenson M D, Ast J C, Dimcheff D E, Yuri T, Mindell D P. Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Molecular Phylogenetics and Evolution, 1999, 12(2): 105-114.

[27]Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: improbing the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 1994, 22(22): 4673-4680.

[28]Kumar S, Tamura S, Jakobsen B I, Nei M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics, 2001, 17(12): 1244-1245.

[29]Pybus O G. Model selection and the molecular clock. Public Library of Science (PLoS) Biology, 2006, 4(5): 686-688.

[30]Huang S. The genetic equidistance result of molecular evolution is independent of mutation rates. La Jolla: The Burnham Institute for Medical Research, 2008.

[31]Päckert M, Martens J, Severinghaus L L. The Taiwan firecrest (Regulus goodfellowi) belongs to the goldcrest assemblage (Regulus regulus s. l.): evidence from mitochondrial DNA and the territorial song of the regulidae. Ornithology, 2009, 150(1): 205-220.

[32]van Tuinen M, Dyke G J. Calibration of galliform molecular clocks using multiple fossils and genetic partitions. Molecular Phylogenetics and Evolution, 2004, 30(1): 74-86.

[33]方晓思, 张志军, 庞其清, 李佩贤, 韩迎建, 谢宏亮, 闫荣浩, 庞丰久, 吕景禄, 程政武. 河南西峡白垩纪地层和蛋化石. 地球学报, 2007, 28(2): 123-142.

Fang X S, Zhang Z J, Pang Q Q, Li P X, Han Y J, Xie H L, Yan R H, Pang F J, Lü J L, Cheng Z W. Cretaceous strata and egg fossils in XiXia, Henan province. Acta Geosientica Sinca, 2007, 28(2): 123-142. (in Chinese)

[34]Hou L H, Zhou Z H, Martin L D, Feduccia A. A beaked bird from the jurassic of China. Nature, 1995, 377(6550): 616-618.

[35]Cooper A, Penny D. Mass survival of birds across the cretaceous-tertiary boundary: molecular evidence. Science, 1997, 275(5303): 1109-1113.

[36]Weir J T, Schluter D. Calibrating the avian molecular clock. Molecular Ecology, 2008, 17(10): 2321-2328.

[37]Härlid A, Arnason U. Analyses of mitochondrial DNA nest ratite brid within the neognathae: supporting a neotenous origin of ratite morphological characters. Proceedings of the Royal Society B: Biological Sciences, 1999, 266(1416): 305-309.

[38]Rambaut A, Bromham L. Estimating divergence dates from molecular sequences. Molecular Biology and Evolution, 1998, 15(4): 442-448.

[39]张  原, 张正旺, 郑  楠. 雉科基部类群分子钟的标定. 北京师范大学学报: 自然科学版, 2003, 39(4): 525-530.

Zhang Y, Zhang Z W, Zheng N. Calibration of basal phasianidae molecular clocks. Journal of Beijing Normal University: Natural Science, 2003, 39(4): 525-530. (in Chinese)

[40]van Tuinen M, Hedges S B. Calibration of avian molecular clocks. Molecular Biology and Evolution, 2001, 18(2): 206-213.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!