Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (18): 3721-3732.doi: 10.3864/j.issn.0578-1752.2011.18.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Fruiting-Branch Position, Temperature-Light Factors and Nitrogen Rates on Cotton (Gossypium hirsutum L.)  Fiber Strength Formation

 ZHAO  Wen-Qing, MENG  Ya-Li, CHEN  Bing-Lin, WANG  You-Hua, LI  Wen-Feng, ZHOU  Zhi-Guo   

  1. 1. 南京农业大学农学院/农业部南方作物生理生态重点开放实验室
  • Received:2010-12-27 Revised:2011-03-29 Online:2011-09-15 Published:2011-04-07

Abstract: 【Objective】The effects of fruiting-branch position, temperature-light factor and nitrogen rates on cotton fiber strength were studied. 【Method】 Field experiments were carried out in Nanjing (118º50′E, 32º02′N, middle lower reaches of Yangtze River Valley) and Xuzhou (117°11′E, 34°15′N, Yellow River Valley) with two cotton cultivars (Kemian 1 with average fiber strength 35 cN•tex-1; NuCOTN 33B with average fiber strength 32 cN•tex-1). Two sowing dates and three nitrogen application levels were applied, thus cotton fiber developing process can be arranged at different fruiting-branch positions and ecological conditions.【Result】 An interaction between fruiting branch and temperature was observed. Cotton bolls in the middle-branch produced stronger fiber than that in lower- and upper-branch when temperature-light factor was optimal. While temperature-light decreased, fruiting-branch effects were not significant. Development of cotton fiber strength could be divided into rapid and steady growth periods. PTP (cumulative photo-thermal product) during cotton fiber secondary wall thickening period (as temperature-light factor) were linear with the rate (VRG) and duration (TRG) of fiber strength rapid growth period, while the rate (VSG) and duration (TSG) of fiber strength steady growth period, the observed cotton fiber strength (FSobs) were quadratic with PTP, respectively. The strongest Strobs (34.8 and 31.9 cN•tex-1 for Kemian 1 and NuCOTN 33B, respectively) was obtained at PTP of 291 MJ•m-2, when VRG was 1.5 cN•tex-1•d-1 and TRG was 16 d, VSG and TSG for Kemian 1 were 0.32 cN•tex-1•d-1 and 21.4 d, while for NuCOTN 33B were 0.18 cN•tex-1•d-1 and 24.0 d, respectively. N fertilization significantly affected formation of cotton fiber strength and had a compensatory effect on PTP. As N increased, PTP for obtaining the highest Strobs decreased. NA under 240 kg N•hm-2 was more suitable for cotton fiber strength when PTP was greater than 104 MJ•m-2; when PTP was less than that value, NA under 480 kg N•hm-2 was more appropriate.【Conclusion】Fruiting-branch significantly affects the formation of cotton fiber strength and there is an interaction between fruiting-branch and temperature-light factor. Temperature-light factor and nitrogen rate significantly influence cotton fiber strength formation, nitrogen has a compensate effect on temperature-light factor. Development of cotton fiber strength can be divided into rapid and steady growth period. Cultivar difference in cotton fiber strength may come from the difference in steady growth period.

Key words: GossypiumhirstumL., fruiting-branchposition, PTP, nitrogenrate, subtendingleafofcottonboll, leafnitrogenconcentration, fiberstrength

[1]蒋光华, 周治国, 陈兵林, 孟亚利. 棉株生理年龄对纤维加厚发育及纤维比强度形成的影响. 中国农业科学, 2006, 39(2): 265-273.

Jiang G H, Zhou Z G, Chen B L, Meng Y L. Effect of cotton physiological age on the fiber thickening development and fiber strength formation. Scientia Agricultura Sinica, 2006, 39(2): 265-273. (in Chinese)

[2]张文静, 周治国, 胡宏标, 王友华. 棉花季节桃纤维发育相关酶活性变化与纤维比强度形成的关系. 棉花学报, 2008, 20(5): 342-347.

Zhang W J, Zhou Z G, Hu H B, Wang Y H. Relationship between fiber strength and activity of fiber development related enzyme in cotton seasonal boll. Cotton Science, 2008, 20(5): 342-347. (in Chinese)

[3]马溶慧, 许乃银, 张传喜, 李文峰, 冯 营, 屈 磊, 王友华, 周治国. 氮素对不同开花期棉铃纤维比强度形成的生理基础的影响. 应用生态学报, 2008, 19(12): 2618-2626.

Ma R H, Xu N Y, Zhang C X, Li W F, Feng Y, Qu L, Wang Y H, Zhou Z G. Roles of nitrogen fertilization in regulating the physiological bases of fiber specific strength formation in cotton bolls bloomed at different dates.  Chinese Journal of Applied Ecology, 2008, 19(12): 2618-2626. (in Chinese)

[4]冯 营, 赵新华, 王友华, 马溶慧, 周治国. 棉纤维发育过程中糖代谢生理特征对氮素的响应及其与纤维比强度形成的关系. 中国农业科学, 2009, 42(1): 93-102.

Feng Y, Zhao X H, Wang Y H, Ma R H, Zhou Z G. Responses of carbohydrate metabolism to nitrogen in cotton fiber development and its relationships with fiber strength formation. Scientia Agricultura Sinica, 2009, 42(1): 93-102. (in Chinese)

[5]马溶慧, 周治国, 王友华, 冯 营, 孟亚利. 棉铃对位叶氮浓度与纤维品质指标的关系. 中国农业科学, 2009, 42(3) :833-842.

Ma R H, Zhou Z G, Wang Y H, Feng Y, Meng Y L. Relationship between nitrogen concentration in the subtending leaf of cotton boll and fiber quality indices. Scientia Agricultura Sinica, 2009, 42(3): 833-842. (in Chinese)

[6]赵新华, 王友华, 束红梅, 周治国. 棉(Gossypium hirsutum L.)株生理年龄对棉铃生物量和氮素累积的影响. 中国农业科学, 2010, 43(22): 4605-4613.

Zhao X H, Wang Y H, Shu H M, Zhou Z G. Effect of plant physiological age on biomass and nitrogen accumulation in cotton boll. Scientia Agricultura Sinica, 2010, 43(22): 4605-4613. (in Chinese)

[7]Davidonis G H, Johnson A S, Landivar J A, Fernandez C J. Cotton fiber quality is related to boll location and planting date. Agronomy Journal, 2004, 96(1): 42-47.

[8]Wrather J A, Phipps B J, Stevens W E, Phillips A S, Vories E D. Cotton planting date and plant population effects on yield and fiber quality in the Mississippi Delta. The Journal of Cotton Science, 2008, 12: 1-7.

[9]Yeates S J, Constable G A, Mc Cumstie T. Irrigated cotton in the tropical dry season. III: Impact of temperature, cultivar and sowing date on fibre quality. Field Crops Research, 2010, 116(3): 300-307.

[10]Liakatas A, Roussopoulos D, Whittington W J. Controlled- temperature effects on cotton yield and fibre properties. Journal of Agricultural Science, 1998, 130: 463-471.

[11]Reddy K, Davidonis G, Johnson A, Vinyard B. Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties. Agronomy Journal, 1999, 91(5): 851-858.

[12]Pettigrew W T. The effect of higher temperatures on cotton lint yield production and fiber quality. Crop Science, 2008, 48(1): 278-285.

[13]Pettigrew W T. Environmental effects on cotton fiber carbohydrate concentration and quality. Crop Science, 2001, 41: 1108-1113.

[14]王庆材, 孙学振, 宋宪亮, 郭  英, 李玉静, 陈淑义, 王振林. 不同棉铃发育时期遮荫对棉纤维品质性状的影响. 作物学报, 2006, 32(5): 671-675.

Wang Q C, Sun X Z, Song X L, Guo Y, Li Y J, Chen S Y, Wang Z L. Effect of shading at different developmental stages of cotton bolls on cotton fibre quality. Acta Agronomica Sinica, 2006, 32(5): 671-675. (in Chinese)

[15]Pettigrew W T. Source-to-sink manipulation effects on cotton fiber quality. Agronomy Journal, 1995, 87: 947-952.

[16]Zhao D, Osterhuis D M. Cotton responses to shade at different growth stages: growth, lint yield and fibre quality. Experimental Agriculture, 2000, 36(1): 27-39.

[17]束红梅, 周治国, 郑 密, 王友华. 不同温度敏感性棉花纤维发育相关酶活性变化对低温的响应. 应用生态学报, 2009, 20(9): 2157-2165.

Shu H M, Zhou Z G, Zheng M, Wang Y H. Low-temperature responses of enzyme activities related to fiber development of two cotton (Gossypium hirsutum L.) cultivars with different temperature- sensitivity. Chinese Journal of Applied Ecology, 2009, 20(9): 2157-2165. (in Chinese)

[18]张文静, 胡宏标, 王友华, 陈兵林, 束红梅, 周治国. 棉纤维发育相关酶活性的基因型差异与纤维比强度的关系. 中国农业科学, 2007, 40(10): 2177-2184.

Zhang W J, Hu H B, Wang Y H, Chen B L, Shu H M, Zhou Z G. Fiber strength and enzyme activities of different coton genotypes during fiber development. Scientia Agricultura Sinica, 2007, 40(10): 2177-2184. (in Chinese)

[19]束红梅, 王友华, 张文静, 周治国. 两个棉花品种纤维发育关键酶活性变化特征及其与纤维比强度的关系. 作物学报, 2008, 34(3): 437-446.

Shu H M, Wang Y H, Zhang W J, Zhou Z G. Activity changes for enzymes associated with fiber development and relation to fiber strength in two cotton cultivars. Acta Agronomica Sinica, 2008, 34(3): 437-446. (in Chinese)

[20]Evans J R. Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy I. Canopy characteristics. Australian Journal of Plant Physiology, 1990, 20: 55-67.

[21]Bondada B R, Osterhuis D M, Norman R J, Baker W H. Canopy photosynthesis, growth, yield and boll 15N accumulation under nitrogen stress in cotton. Crop Science, 1996, 36(1): 127-133.

[22]Girma K, Teal R K, Freeman K W, Boman R K, Raun W R. Cotton lint yield and quality as affected by applications of N, P, and K fertilizers. The Journal of Cotton Science, 2007, 11(1): 12-19.

[23]Ma R H, Xu N Y, Zhang C X, Li W F, Feng Y, Qu L, Wang Y H, Zhou Z G. Physiological mechanism of sucrose metabolism in cotton fiber and fiber strength regulated by nitrogen. Acta Agronomica Sinica, 2008, 34(12): 2143-2151.

[24]赵文青, 孟亚利, 陈美丽, 李文峰, 周治国. 棉株果枝部位、温光复合因子及施氮量对纤维长度形成的影响. 作物学报, 2011, 37(6): 1077-1086.

Zhao W Q, Meng Y L, Chen M L, Li W F, Zhou Z G. effects of fruiting-branch position, temperature-light factors and nitrogen rates on cotton (Gossypium hirsutum L.) fiber length development. Acta Agronomica Sinica, 2011, 37(6): 1077-1086. (in Chinese)

[25]Xue X P, Sha Y Z, Guo W Q, Zhou Z G. Accumulation characteristics of biomass and nitrogen and critical nitrogen concentration dilution model of cotton reproductive organ. Acta Ecologica Sinica, 2008, 28(12): 6204-6211.

[26]Haigler C H, Rao N R, Roberts E M, Huang J Y, Upchurch D R, Trolinder N L. Cultured ovules as models for cotton fiber development under low temperatures. Plant Physiology, 1991, 95(1): 88-96.

[27]陈兵林, 曹卫星, 周治国. 棉花单铃干物质积累分配的分期动态模拟及检验. 中国农业科学, 2006, 39(3): 487-493.

Chen B L, Cao W X, Zhou Z G. Simulation and validation of dry matter accumulation and distribution of cotton bolls at different flowering stages. Scientia Agricultura Sinica, 2006, 39(3): 487-493. (in Chinese)

[28]陈冠文, 余 渝. 棉铃发育温光效应的初步研究. 棉花学报, 2001, 13(1): 63-64.

Chen G W, Yu Y. Preliminary study on the temperature-light effects on boll development. Cotton Science, 2001, 13(1): 63-64. (in Chinese)

[29]单世华, 施 培, 孙学振, 周治国, 边栋材. 开花期和果枝部位对短季棉纤维品质及超分子结构的影响. 中国农业科学, 2002, 35(2): 163-168.

Shan S H, Shi P, Sun X Z, Zhou Z G, Bian D C. Effect of anthesis date and fruiting branches on cotton fiber qualities and super-molecular structure. Scientia Agricultura Sinica, 2002, 35(2): 163-168. (in Chinese)

[30]王友华, 陈兵林, 卞海云, 蒋光华, 张文静, 胡宏标, 束红梅, 周治国. 温度与棉株生理年龄的协同效应对棉纤维发育的影响. 作物学报, 2006, 32(11): 1671-1677.

Wang Y H, Chen B L, Bian H Y, Jiang G H, Zhang W J, Hu H B, Shu H M, Zhou Z G. Synergistic effect of temperature and cotton physiological age on fiber development. Acta Agronomica Sinica, 2006, 32(11): 1671-1677. (in Chinese)

[31]卞海云, 周治国, 陈兵林, 蒋光华. 棉纤维加厚发育期间纤维素生物合成研究进展. 棉花学报, 2004, 16(6): 374-378.

Bian H Y, Zhou Z G, Chen B L, Jiang G H. Biological synthesis of cellulose during cotton fiber thickening process. Cotton Science, 2004, 16(6): 374-378. (in Chinese)

[32]蒋光华, 孟亚利, 陈兵林, 卞海云, 周治国. 低温对棉纤维比强度形成的生理机制影响. 植物生态学报, 2006, 30(2): 335-343.

Jiang G H, Meng Y L, Chen B L, Bian H Y, Zhou Z G. Effects of low temperature on physiological mechanisms of cotton fiber strength forming process. Journal of Plant Ecology, 2006, 30(2): 335-343. (in Chinese)

[33]Haigler C H, Zhang D, Wilkerson C G. Biotechnological improvement of cotton fibre maturity. Physiologia Plantarum, 2005, 124(3): 285-294.

[34]卞海云, 王友华, 陈兵林, 束红梅, 周治国. 低温条件下相关关键酶活性对棉纤维比强度形成的影响. 中国农业科学, 2008, 41(4): 1235-1241.

Bian H Y, Wang Y H, Chen B L, Shu H M, Zhou Z G. Effects of the key enzymes activity on the fiber strength formation under low temperature condition. Scientia Agricultura Sinica, 2008, 41(4): 1235-1241. (in Chinese)

[35]周 青, 王友华, 许乃银, 张传喜, 周治国, 陈兵林. 温度对棉纤维糖代谢相关酶活性的影响. 应用生态学报,2009, 20(1):149-156. (in Chinese)

Zhou Q, Wang Y H, Xu N Y, Zhang C X, Zhou Z G, Chen B L. Effects of air temperature on enzyme activities of cotton plants related to saccharide metabolism of cotton fiber. Chinese Journal of Applied Ecology, 2009, 20(1): 149-156. (in Chinese)

[36]李永秀, 罗卫红, 倪纪恒, 陈永山, 徐国彬, 金 亮, 戴剑锋, 陈春宏, 卜崇兴. 基于辐射和温度热效应的温室水果黄瓜叶面积模型. 植物生态学报, 2006, 30(5): 861-867.

Li Y X, Luo W H, Ni J H, Chen Y S, Xu G B, Jin L, Dai J F, Chen C H, Bu C X. Simulation of greenhouse cucumber leaf area based on radiation and thermal effectiveness. Journal of Plant Ecology, 2006, 30(5): 861-867. (in Chinese)

[37]Roussopoulos D, Liakatas A, Whittington W J. Cotton responses to different light-temperature regimes. Journal of Agricultural Science, 1998, 131: 277-283.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!