中国农业科学 ›› 2025, Vol. 58 ›› Issue (21): 4512-4527.doi: 10.3864/j.issn.0578-1752.2025.21.019

• 苜蓿耐盐碱抗旱基因挖掘与育种 • 上一篇    下一篇

盐碱胁迫下的紫花苜蓿幼苗蛋白组差异分析

杨永念1,2(), 曾祥翠1, 刘青松3, 李如月1, 龙瑞才1, 陈林1, 王雪1, 何飞1, 康俊梅1, 李明娜1()   

  1. 1 中国农业科学院北京畜牧兽医研究所,北京 100193
    2 华南农业大学林学与风景园林学院,广州 510642
    3 沧州市农林科学院,河北沧州 061001
  • 收稿日期:2025-03-04 接受日期:2025-04-09 出版日期:2025-11-01 发布日期:2025-11-06
  • 通信作者:
    李明娜,E-mail:
  • 联系方式: 杨永念,E-mail:yangyongnian333@163.com。
  • 基金资助:
    呼和浩特市科技计划项目(2024—揭榜挂帅—农—2—2); 中国农业科学院科技创新工程项目(ASTIP-IAS14)

Differential Proteomic Analysis of Alfalfa Seedlings Under Salt- Alkaline Stress

YANG YongNian1,2(), ZENG XiangCui1, LIU QingSong3, LI RuYue1, LONG RuiCai1, CHEN Lin1, WANG Xue1, HE Fei1, KANG JunMei1, LI MingNa1()   

  1. 1 Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193
    2 College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642
    3 Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, Hebei
  • Received:2025-03-04 Accepted:2025-04-09 Published:2025-11-01 Online:2025-11-06

摘要:

【目的】土壤盐碱化是紫花苜蓿(Medicago sativa L.)生长和产量的重要限制因素。为解析紫花苜蓿幼苗响应盐碱胁迫的分子机理,通过蛋白质组学分析,揭示盐碱胁迫下关键差异蛋白及其参与的代谢通路,为其耐盐碱机制研究提供理论依据。【方法】以中苜4号紫花苜蓿为材料,对其种子分别进行盐(30 mmol·L-1 NaCl和30 mmol·L-1 Na2SO4)和碱(10 mmol·L-1 Na2CO3和10 mmol·L-1 NaHCO3)处理,利用TMT标记结合液相色谱-质谱联用技术,对胁迫后的幼苗进行了蛋白组差异分析。【结果】蛋白组共鉴定到6 829个蛋白,其中碱、盐胁迫下分别有489个(274个上调,215个下调)和376个差异蛋白(218个上调,158个下调)。GO注释分析发现,差异蛋白主要注释于细胞代谢、有机物代谢、胁迫响应等生物过程,以及细胞内细胞器、细胞质和膜等细胞组分。KEGG通路富集分析发现,碱胁迫下差异蛋白显著富集于光合作用、苯丙烷生物合成和异黄酮生物合成等通路,盐胁迫下差异蛋白主要富集于光合作用、异黄酮生物合成及谷胱甘肽代谢等通路。对富集到的蛋白进一步分析发现,紫花苜蓿幼苗通过上调异黄酮生物合成途径关键酶(HI4OMT和CYP81E),增强抗氧化能力和渗透调节能力,从而抵御盐碱胁迫。HI4OMT和CYP81E等关键酶的上调显著促进了异黄酮类化合物的积累,帮助植物清除活性氧并维持细胞稳态。此外,苯丙烷生物合成途径关键酶(PAL、CAD和COMT)在碱胁迫下显著上调,促进了木质素和类黄酮的合成,增强了细胞壁强度和抗氧化能力,帮助植物适应高pH环境,以应对碱胁迫。在盐胁迫下,紫花苜蓿幼苗通过上调谷胱甘肽代谢途径关键酶(PRDX6、GPX和GST),维持氧化还原稳态并清除活性氧,增强对盐胁迫的耐受性。【结论】通过蛋白组学分析,揭示了紫花苜蓿幼苗响应盐碱胁迫的关键蛋白及代谢通路,为解析紫花苜蓿耐盐碱分子机制提供了重要的理论依据,同时也为紫花苜蓿的耐盐碱育种提供了潜在的候选蛋白和代谢通路。后续可进一步验证这些关键蛋白的功能,并通过一系列生物育种的技术手段,培育具有更高耐盐碱性的紫花苜蓿新品种,以应对土壤盐碱化对苜蓿生产带来的挑战。

关键词: 紫花苜蓿, 盐碱胁迫, 蛋白质组, 苯丙烷生物合成途径, 谷胱甘肽代谢途径

Abstract:

【Objective】Soil salinization and alkalization are significant limiting factors for the growth and yield of alfalfa (Medicago sativa L.). To elucidate the molecular mechanisms underlying the response of alfalfa seedlings to salt or alkali stress, this study employed proteomic analysis to identify key differentially expressed proteins and their associated metabolic pathways under saline-alkali stress, so as to provide a theoretical foundation for elucidating the mechanisms of saline-alkali tolerance. 【Method】This study used Zhongmu No. 4 alfalfa as the experimental material. Seeds were subjected to salt stress (30 mmol·L-1 NaCl and 30 mmol·L-1 Na2SO4) and alkali stress (10 mmol·L-1 Na2CO3 and 10 mmol·L-1 NaHCO3). TMT labeling combined with liquid chromatography- mass spectrometry (LC-MS/MS) was employed to analyze the proteomic changes in alfalfa seedlings after stress treatments. 【Result】In total, 6 829 proteins were identified, including 489 differentially expressed proteins (DEPs) (274 up-regulated and 215 down-regulated) under alkali stress and 376 DEPs (218 up-regulated and 158 down-regulated) under salt stress. GO annotation analysis revealed that the DEPs were primarily associated with biological processes, such as cellular metabolism, organic metabolism, and stress response, as well as cellular components including intracellular organelles, cytoplasm, and membranes. KEGG pathway enrichment analysis indicated that under alkali stress, DEPs were significantly enriched in pathways, such as photosynthesis, phenylpropanoid biosynthesis, and isoflavonoid biosynthesis, while under salt stress, they were mainly enriched in photosynthesis, isoflavonoid biosynthesis, and glutathione metabolism. Further analysis of the enriched proteins demonstrated that alfalfa seedlings enhanced their resistance to salt-alkali stress by up-regulating key proteins in the isoflavonoid biosynthesis pathway (HI4OMT and CYP81E). The upregulation of key enzymes such as HI4OMT and CYP81E significantly enhanced the accumulation of isoflavonoids, which facilitated reactive oxygen species scavenging and maintained cellular homeostasis in plants. Furthermore, under alkaline stress, key enzymes (PAL, CAD, and COMT) in the phenylpropanoid biosynthesis pathway were markedly upregulated, promoting the synthesis of lignin and flavonoids. This process strengthened cell wall integrity and antioxidant capacity, enabling plants to adapt to high-pH environments and cope with alkaline stress. Under salt stress, alfalfa seedlings upregulated critical enzymes (PRDX6, GPX, and GST) in the glutathione metabolism pathway, maintaining redox homeostasis and enhancing ROS scavenging, thereby improving salt stress tolerance. 【Conclusion】In summary, this proteomic study elucidated key proteins and metabolic pathways involved in the response of alfalfa seedlings to salt-alkali stress, providing a theoretical foundation for understanding the molecular mechanisms of salt-alkali tolerance in alfalfa. Simultaneously, this study provided potential candidate proteins and metabolic pathways for breeding salt-alkali tolerant alfalfa. Subsequent research could further validate the functions of these key proteins and employ advanced biotechnological breeding approaches to develop new alfalfa varieties with enhanced salt-alkali tolerance, thereby addressing the challenges posed by soil salinization-alkalization to alfalfa production.

Key words: Alfalfa, salt-alkali stress, proteomics, phenylpropanoid biosynthesis, glutathione metabolism pathway