中国农业科学 ›› 2025, Vol. 58 ›› Issue (14): 2838-2853.doi: 10.3864/j.issn.0578-1752.2025.14.010

• 土壤肥料·节水灌溉·农业生态环境 • 上一篇    下一篇

基于数据填补的四川盆地耕地表层土壤无机碳时空变化特征

李艾雯(), 成金礼, 陈丹, 陈鑫怡, 毛雅若, 李启权*()   

  1. 四川农业大学资源学院,成都 611130
  • 收稿日期:2024-09-18 接受日期:2024-11-21 出版日期:2025-07-17 发布日期:2025-07-17
  • 通信作者:
    李启权,E-mail:
  • 联系方式: 李艾雯,E-mail:ivy_laww@163.com。
  • 基金资助:
    四川省自然科学基金(2022NSFSC0104)

Characteristics of Spatial and Temporal Changes of Cropland Topsoil Inorganic Carbon in the Sichuan Basin Based on Gap-Filled Data

LI AiWen(), CHENG JinLi, CHEN Dan, CHEN XinYi, MAO YaRuo, LI QiQuan*()   

  1. College of Resources, Sichuan Agricultural University, Chengdu 611130
  • Received:2024-09-18 Accepted:2024-11-21 Published:2025-07-17 Online:2025-07-17

摘要:

【目的】通过预测模型填补土壤无机碳(soil inorganic carbon,SIC)缺失值并验证其对空间插值精度的提升效果,为快速准确揭示区域土壤属性时空变化信息提供科学依据。【方法】以四川盆地为案例区,基于1980—1985年全国第二次土壤普查获得的4 219个耕地土壤表层(0—20 cm)样点数据和2017—2019年实地对照采样获得的4 409个样点数据,结合气候、地形及SIC相关土壤属性,采用径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)模型和随机森林(Random Forest,RF)模型分别构建不同时期四川盆地6个亚流域耕地表层SIC的最佳预测模型以填补其缺失值,并对比增加SIC填补值的样点作为建模样点后对普通克里格(Ordinary Kriging,OK)方法空间插值精度的影响。【结果】RBFNN模型和RF模型有效填补了四川盆地耕地表层SIC缺失值,不同时期各亚流域的最佳预测模型有所差异,对独立验证样点的决定系数(coefficient of determination, R 2)为0.70—0.96,均方根误差(root mean square error,RMSE)为0.33—2.40 g·kg-1;而对两个时期四川盆地整体的独立验证样点,其最佳预测结果的R 2为0.76和0.86,RMSE为1.75和1.26 g·kg-1。OK方法对两个时期实测值样点的插值R 2分别为0.27和0.37,平均绝对误差(mean absolute error,MAE)、平均相对误差(mean relative error,MRE)和 RMSE分别为2.11和1.56 g·kg-1、77.15%和65.96%、3.09和2.66 g·kg-1。将填补SIC缺失值的样点加入建模样点集后,OK方法对两个时期验证样点插值结果的R 2提高了0.10—0.14,MAE、MRERMSE降低了3.56%—16.36%,克里格预测方差大幅降低。基于填补数据,近40年四川盆地耕地表层SIC含量均值从2.85 g·kg-1下降至2.55 g·kg-1,下降了10.53%。SIC含量下降的区域广泛分布于盆地四周,而盆地中部SIC含量增加。在空间上,两个时期的四川盆地耕地表层SIC含量均呈中部高、四周低的空间分布格局;高值区集中分布于涪江流域和沱江流域中部,而低值区主要分布在盆地四周。【结论】结合现有土壤数据和环境数据,运用RBFNN模型和RF模型构建区域最佳预测模型能较好填补土壤属性的历史缺失值。基于填补样点,能有效提高土壤属性空间插值精度,进而实现对区域土壤属性时空变化信息的快速准确获取,为评估耕地土壤质量和制定高效管理措施提供支撑。

关键词: 土壤无机碳, 时空变化, 传递函数, 径向基函数神经网络模型, 随机森林模型, 四川盆地

Abstract:

【Objective】This study aimed to fill soil inorganic carbon (SIC) gaps through predictive modeling and assess its impact on spatial interpolation accuracy, thereby providing a scientific basis for rapidly and accurately revealing the spatiotemporal variability of regional soil properties.【Method】This study focused on the Sichuan Basin, utilizing 4 219 cropland topsoil (0-20 cm) samples from the Second National Soil Survey (1980-1985) and 4 409 samples from field sampling conducted between 2017 and 2019. By integrating climate, topography, and other SIC-related soil attributes, Radial Basis Function Neural Network (RBFNN) model and Random Forest (RF) model were used to construct optimal SIC predictive models for the topsoil across six sub-basins in different periods, thereby filling in missing SIC values. Subsequently, this study assessed how adding these filled SIC values as sample points impacted the spatial interpolation accuracy of the Ordinary Kriging (OK) method.【Result】The RBFNN model and RF model effectively filled missing SIC values in the cropland topsoil of the Sichuan Basin. Optimal predictive models differed across sub-basins and periods, with the coefficient of determination (R²) for independent validation samples ranging from 0.70 to 0.96 and the root mean square error (RMSE) ranging from 0.33 to 2.40 g·kg-1. For independent validation samples across the two periods in the entire Sichuan Basin, the best predictive models yielded R² values of 0.76 and 0.86, with RMSE values of 1.75 and 1.26 g·kg-1, respectively. For observed samples, the Ordinary Kriging (OK) method yielded R² values of 0.27 and 0.37 across the two periods, with mean absolute error (MAE), mean relative error (MRE), and RMSE values of 2.11 and 1.56 g·kg-1, 77.15% and 65.96%, 3.09 and 2.66 g·kg-1, respectively. After adding filled SIC values to the sample pool, the OK interpolation results for validation samples showed an increase in R² by 0.10 to 0.14, with reductions in MAE, MRE, and RMSE by 3.56% to 16.36%, and a significant decrease in kriging prediction variance. Based on the filled data, the mean SIC content in the cropland topsoil of the Sichuan Basin declined from 2.85 g·kg-1 to 2.55 g·kg-1 over the past 40 years, representing a 10.53% reduction. Those areas with declining SIC content were widely distributed around the periphery of the basin, while SIC content increased in the central region of the basin. Spatially, SIC in the cropland topsoil exhibited a high-value pattern in the central basin and lower values on the periphery in both periods, with high SIC areas concentrated in the central reaches of the Fujiang and Tuojiang River basins, and low-value areas primarily distributed on the basin’s periphery.【Conclusion】Integrating existing soil and environmental data, the RBFNN model and RF model were employed to construct an optimal regional prediction model, effectively addressing historical gaps in soil property data. This approach, based on supplemented sample points, enhanced spatial interpolation accuracy, enabling rapid and precise acquisition of spatiotemporal soil property information. It provided the critical support for assessing cropland soil quality and developing targeted management strategies.

Key words: soil inorganic carbon, spatiotemporal change, pedotransfer functions, Radial Basis Function Neural Network (RBFNN) model, Random Forest (RF) model, Sichuan basin