[1] |
NOTTINGHAM A T, MEIR P, VELASQUEZ E, TURNER B L. Soil carbon loss by experimental warming in a tropical forest. Nature, 2020, 584: 234-237.
|
[2] |
MELILLO J M, FREY S D, DEANGELIS K M, WERNER W J, BERNARD M J, BOWLES F P, POLD G, KNORR M A, GRANDY A S. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 2017, 358(6359): 101-105.
doi: 10.1126/science.aan2874
pmid: 28983050
|
[3] |
JOBBAGY E G, JACKSON R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 2000, 10(2): 423.
|
[4] |
ZAMANIAN K, ZHOU J B, KUZYAKOV Y. Soil carbonates: The unaccounted, irrecoverable carbon source. Geoderma, 2021, 384: 114817.
|
[5] |
HUANG Y Y, SONG X D, WANG Y P, CANADELL J G, LUO Y Q, CIAIS P, CHEN A P, HONG S B, WANG Y G, TAO F, et al. Size, distribution, and vulnerability of the global soil inorganic carbon. Science, 2024, 384(6692): 233-239.
doi: 10.1126/science.adi7918
pmid: 38603490
|
[6] |
SCHLESINGER W H. The formation of caliche in soils of the Mojave Desert, California. Geochimica et Cosmochimica Acta, 1985, 49(1): 57-66.
|
[7] |
ZANG H D, BLAGODATSKAYA E, WEN Y, XU X L, DYCKMANS J, KUZYAKOV Y. Carbon sequestration and turnover in soil under the energy crop Miscanthus: repeated 13C natural abundance approach and literature synthesis. GCB Bioenergy, 2018, 10(4): 262-271.
|
[8] |
|
|
FENG X L, ZHANG C T, XU C Y, GENG Z C, HU F N, DU W. Spatiotemporal distribution characteristics and influencing factors of soil inorganic carbon in Shaanxi Province. Scientia Agricultura Sinica, 2024, 57(8): 1517-1532. doi: 10.3864/j.issn.0578-1752.2024.08.008. (in Chinese)
|
[9] |
KIM J H, JOBBÁGY E G, RICHTER D D, TRUMBORE S E, JACKSON R B. Agricultural acceleration of soil carbonate weathering. Global Change Biology, 2020, 26(10): 5988-6002.
|
[10] |
RAHEB A, HEIDARI A, MAHMOODI S. Organic and inorganic carbon storage in soils along an arid to dry sub-humid climosequence in northwest of Iran. Catena, 2017, 153: 66-74.
|
[11] |
SHANHUN F L, ALMOND P C, CLOUGH T J, SMITH C M S. Abiotic processes dominate CO2 fluxes in Antarctic soils. Soil Biology and Biochemistry, 2012, 53: 99-111.
|
[12] |
TAMIR G, SHENKER M, HELLER H, BLOOM P R, FINE P, BAR-TAL A. Can soil carbonate dissolution lead to overestimation of soil respiration? Soil Science Society of America Journal, 2011, 75(4): 1414-1422.
|
[13] |
ZAMANIAN K, KUZYAKOV Y. Contribution of soil inorganic carbon to atmospheric CO2: More important than previously thought. Global Change Biology, 2019, 25(1): e1-e3.
|
[14] |
李艾雯, 冉敏, 宋靓颖, 薛晶玲, 张元媛, 李呈吉, 邓茜, 方红艳, 代天飞, 李启权. 四川盆地耕地表层土壤有机碳含量空间分布特征及其影响因素. 长江流域资源与环境, 2023, 32(5): 1102-1112.
|
|
LI A W, RAN M, SONG L Y, XUE J L, ZHANG Y Y, LI C J, DENG Q, FANG H Y, DAI T F, LI Q Q. Spatial distribution characteristics and influencing factors of cropland topsoil organic carbon content in the Sichuan Basin. Resources and Environment in the Yangtze Basin, 2023, 32(5): 1102-1112. (in Chinese)
|
[15] |
AN H, WU X Z, ZHANG Y R, TANG Z S. Effects of land-use change on soil inorganic carbon: A meta-analysis. Geoderma, 2019, 353: 273-282.
doi: 10.1016/j.geoderma.2019.07.008
|
[16] |
WANG X J, XU M G, WANG J P, ZHANG W J, YANG X Y, HUANG S M, LIU H. Fertilization enhancing carbon sequestration as carbonate in arid cropland: Assessments of long-term experiments in Northern China. Plant and Soil, 2014, 380(1): 89-100.
|
[17] |
FILIPPI P, CATTLE S R, PRINGLE M J, BISHOP T F A. A two-step modelling approach to map the occurrence and quantity of soil inorganic carbon. Geoderma, 2020, 371: 114382.
|
[18] |
CHEN B M, FENG W T, JING X, WANG Y G. Dryland agricultural expansion leads to lower content and higher variability of soil inorganic carbon in topsoil. Agriculture, Ecosystems & Environment, 2023, 356: 108620.
|
[19] |
CHEN S C, ARROUAYS D, LEATITIA MULDER V, POGGIO L, MINASNY B, ROUDIER P, LIBOHOVA Z, LAGACHERIE P, SHI Z, HANNAM J, MEERSMANS J, RICHER-DE-FORGES A C, WALTER C. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma, 2022, 409: 115567.
|
[20] |
ZHANG G L, LIU F, SONG X D. Recent progress and future prospect of digital soil mapping: A review. Journal of Integrative Agriculture, 2017, 16(12): 2871-2885.
|
[21] |
|
|
ZHANG Z H, DING J L, WANG J Z, GE X Y, WANG J J, TIAN M L, ZHAO Q D. Digital soil properties mapping by ensembling soil- environment relationship and machine learning in arid regions. Scientia Agricultura Sinica, 2020, 53(3): 563-573. doi: 10.3864/j.issn.0578-1752.2020.03.009. (in Chinese)
|
[22] |
CHEN S C, SABY N P A, MARTIN M P, BARTHÈS B G, GOMEZ C, SHI Z, ARROUAYS D. Integrating additional spectroscopically inferred soil data improves the accuracy of digital soil mapping. Geoderma, 2023, 433: 116467.
|
[23] |
MINASNY B, MCBRATNEY A B. Digital soil mapping: A brief history and some lessons. Geoderma, 2016, 264: 301-311.
|
[24] |
|
|
SHEN Z, ZHANG R L, LONG H Y, WANG Z, ZHU G L, SHI Q X, YU K F, XU A G. Research on spatial distribution of soil particle size distribution in loess region based on three spatial prediction methods-Taking Haiyuan County in Ningxia as an example. Scientia Agricultura Sinica, 2020, 53(18): 3716-3728. doi: 10.3864/j.issn.0578-1752.2020.18.008. (in Chinese)
|
[25] |
巫振富, 赵彦锋, 程道全, 陈杰. 样点数量与空间分布对县域尺度土壤属性空间预测效果的影响. 土壤学报, 2019, 56(6): 1321-1335.
|
|
WU Z F, ZHAO Y F, CHENG D Q, CHEN J. Influences of sample size and spatial distribution on accuracy of predictive soil mapping on a county scale. Acta Pedologica Sinica, 2019, 56(6): 1321-1335. (in Chinese)
|
[26] |
孙越琦, 孙笑梅, 巫振富, 闫军营, 赵彦锋, 陈杰. 样点规模与采样方法对表层土壤pH空间预测精度的影响. 土壤学报, 2023, 60(6): 1595-1609.
|
|
SUN Y Q, SUN X M, WU Z F, YAN J Y, ZHAO Y F, CHEN J. Impact of sample size and sampling method on accuracy of topsoil pH prediction on a regional scale. Acta Pedologica Sinica, 2023, 60(6): 1595-1609. (in Chinese)
|
[27] |
LOISEAU T, ARROUAYS D, RICHER-DE-FORGES A C, LAGACHERIE P, DUCOMMUN C, MINASNY B. Density of soil observations in digital soil mapping: A study in the Mayenne region, France. Geoderma Regional, 2021, 24: e00358.
|
[28] |
RAZA S, MIAO N, WANG P Z, JU X T, CHEN Z J, ZHOU J B, KUZYAKOV Y. Dramatic loss of inorganic carbon by nitrogen- induced soil acidification in Chinese croplands. Global Change Biology, 2020, 26(6): 3738-3751.
|
[29] |
TAO J J, RAZA S, ZHAO M Z, CUI J J, WANG P Z, SUI Y Y, ZAMANIAN K, KUZYAKOV Y, XU M G, CHEN Z J, ZHOU J B. Vulnerability and driving factors of soil inorganic carbon stocks in Chinese croplands. The Science of the Total Environment, 2022, 825: 154087.
|
[30] |
LI Q Q, LI A W, DAI T F, FAN Z M, LUO Y L, LI S, YUAN D G, ZHAO B, TAO Q, WANG C Q, LI B, GAO X S, LI Y D, LI H X, WILSON J P. Depth-dependent soil organic carbon dynamics of croplands across the Chengdu Plain of China from the 1980s to the 2010s. Global Change Biology, 2020, 26(7): 4134-4146.
doi: 10.1111/gcb.15110
pmid: 32267043
|
[31] |
LI Q Q, LI A W, YU X L, DAI T F, PENG Y Y, YUAN D G, ZHAO B, TAO Q, WANG C Q, LI B, GAO X S, LI Y D, WU D Y, XU Q. Soil acidification of the soil profile across Chengdu Plain of China from the 1980s to 2010s. The Science of the Total Environment, 2020, 698: 134320.
|
[32] |
WANG Z W, HUANG L M, SHAO M A. Development of pedotransfer functions for predicting hydraulic parameters of van Genuchten model by incorporating environmental variables on the Qinghai-Tibet Plateau. Soil and Tillage Research, 2024, 236: 105952.
|
[33] |
SONG X D, YANG F, WU H Y, ZHANG J, LI D C, LIU F, ZHAO Y G, YANG J L, JU B, CAI C F, et al. Significant loss of soil inorganic carbon at the continental scale. National Science Review, 2022, 9(2): nwab120.
|
[34] |
YAN X Y, CAI Z, WANG S W, SMITH P. Direct measurement of soil organic carbon content change in the croplands of China. Global Change Biology, 2011, 17(3): 1487-1496.
|
[35] |
BAKER L, ELLISON D. Optimisation of pedotransfer functions using an artificial neural network ensemble method. Geoderma, 2008, 144(1/2): 212-224.
|
[36] |
VAN LEEUWEN C C E, MULDER V L, BATJES N H, HEUVELINK G B M. Effect of measurement error in wet chemistry soil data on the calibration and model performance of pedotransfer functions. Geoderma, 2024, 442: 116762.
|
[37] |
WANG S N, LI R P, WU Y J, WANG W J. Estimation of surface soil moisture by combining a structural equation model and an artificial neural network (SEM-ANN). The Science of the Total Environment, 2023, 876: 162558.
|
[38] |
BENEDET L, ACUÑA-GUZMAN S F, FARIA W M, SILVA S H G, MANCINI M, DOS SANTOS TEIXEIRA A F, PIERANGELI L M P, ACERBI F W Jr, GOMIDE L R, PÁDUA A L Jr, et al. Rapid soil fertility prediction using X-ray fluorescence data and machine learning algorithms. Catena, 2021, 197: 105003.
|
[39] |
LI Q Q, LI S, XIAO Y, ZHAO B, WANG C Q, LI B, GAO X S, LI Y D, BAI G C, WANG Y D, YUAN D G. Soil acidification and its influencing factors in the purple hilly area of southwest China from 1981 to 2012. Catena, 2019, 175: 278-285.
|
[40] |
LI A W, LI C J, ZHANG Y Y, DENG Q, FANG H Y, ZHAO B, RAN M, SONG L Y, XUE J L, TAO Q, et al. The driving factors and buffering mechanism regulating cropland soil acidification across the Sichuan Basin of China. Catena, 2023, 220: 106688.
|
[41] |
李艾雯, 宋靓颖, 冉敏, 李文丹, 张元媛, 李呈吉, 史文娇, 李启权. 气候变暖对四川盆地水稻土有机碳含量变化的影响. 环境科学, 2023, 44(8): 4679-4688.
|
|
LI A W, SONG L Y, RAN M, LI W D, ZHANG Y Y, LI C J, SHI W J, LI Q Q. Impact of climate warming on paddy soil organic carbon change in the Sichuan Basin of China. Environmental Science, 2023, 44(8): 4679-4688. (in Chinese)
|
[42] |
LI A W, ZHANG Y Y, LI C J, DENG Q, FANG H Y, DAI T F, CHEN C P, WANG J T, FAN Z M, SHI W J, et al. Divergent responses of cropland soil organic carbon to warming across the Sichuan Basin of China. The Science of the Total Environment, 2022, 851(Pt 2): 158323.
|
[43] |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
|
|
LU R K. Methods of Soil Agrochemical Analysis. Beijing: China Agriculture Scientech Press, 2000. (in Chinese)
|
[44] |
LI Q Q, YUE T X, WANG C Q, ZHANG W J, YU Y, LI B, YANG J, BAI G C. Spatially distributed modeling of soil organic matter across China: An application of artificial neural network approach. Catena, 2013, 104: 210-218.
|
[45] |
LI Q Q, ZHANG H, JIANG X Y, LUO Y L, WANG C Q, YUE T X, LI B, GAO X S. Spatially distributed modeling of soil organic carbon across China with improved accuracy. Journal of Advances in Modeling Earth Systems, 2017, 9(2): 1167-1185.
|
[46] |
李艾雯, 李文丹, 宋靓颖, 冉敏, 陈丹, 成金礼, 齐浩然, 郭聪慧, 李启权. 四川盆地耕地表层土壤容重缺失数据填补方法. 土壤学报, 2025, 62(01): 40-53.
|
|
LI A W, LI W D, SONG L Y, RAN M, CHEN D, CHENG J L, QI H R, GUO C H, LI Q Q. Methods of filling in bulk density gaps of cropland topsoil in The Sichuan Basin. Acta Pedologica Sinica, 2025, 62(01): 40-53. (in Chinese)
|
[47] |
SLESSAREV E W, LIN Y, BINGHAM N L, JOHNSON J E, DAI Y, SCHIMEL J P, CHADWICK O A. Water balance creates a threshold in soil pH at the global scale. Nature, 2016, 540: 567-569.
|