[1] |
SETH P, SEBASTIAN J. Plants and global warming: Challenges and strategies for a warming world. Plant Cell Reports, 2024, 43(1): 27.
doi: 10.1007/s00299-023-03083-w
pmid: 38163826
|
[2] |
RAY D K, WEST P C, CLARK M, GERBER J S, PRISHCHEPOV A V, CHATTERJEE S. Climate change has likely already affected global food production. PLoS ONE, 2019, 14(5): e0217148.
|
[3] |
MATHUR S, AGRAWAL D, JAJOO A. Photosynthesis: Response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 2014, 137: 116-126.
|
[4] |
SALVUCCI M E, CRAFTS-BRANDNER S J. Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiology, 2004, 134(4): 1460-1470.
doi: 10.1104/pp.103.038323
pmid: 15084731
|
[5] |
FAN J B, XIE Y, ZHANG Z C, CHEN L. Melatonin: A multifunctional factor in plants. International Journal of Molecular Sciences, 2018, 19(5): 1528.
|
[6] |
AFREEN F, ZOBAYED S M A, KOZAI T. Melatonin in Glycyrrhiza uralensis: Response of plant roots to spectral quality of light and UV-B radiation. Journal of Pineal Research, 2006, 41(2): 108-115.
|
[7] |
ARNAO M B, HERNÁNDEZ-RUIZ J. Functions of melatonin in plants: A review. Journal of Pineal Research, 2015, 59(2): 133-150.
doi: 10.1111/jpi.12253
pmid: 26094813
|
[8] |
DEY S, BISWAS A, DENG Y, BIRHANIE Z M, CHEN W T, LI D F. Exogenous melatonin enhances low-temperature stress of jute seedlings through modulation of photosynthesis and antioxidant potential. Heliyon, 2023, 9(8): e19125.
|
[9] |
KUPPUSAMY A, ALAGARSWAMY S, KARUPPUSAMI K M, MADURAIMUTHU D, NATESAN S, RAMALINGAM K, MUNIYAPPAN U, SUBRAMANIAN M, KANAGARAJAN S. Melatonin enhances the photosynthesis and antioxidant enzyme activities of mung bean under drought and high-temperature stress conditions. Plants, 2023, 12(13): 2535.
|
[10] |
JAHAN M S, GUO S R, SUN J, SHU S, WANG Y, ABOU EL- YAZIED A, ALABDALLAH N M, HIKAL M, MOHAMED M H M, IBRAHIM M F M, HASAN M M. Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiology and Biochemistry, 2021, 167: 309-320.
doi: 10.1016/j.plaphy.2021.08.002
pmid: 34392044
|
[11] |
周永海. 甜瓜种质资源耐热性评价及外源物质对热胁迫的缓解效应[D]. 杨凌: 西北农林科技大学, 2021.
|
|
ZHOU Y H. Evaluation of heat tolerance of melon germplasm resources and alleviating effects of exogenous substances on heat stress[D]. Yangling: Northwest A & F University, 2021. (in Chinese)
|
[12] |
LI Z G, XU Y, BAI L K, ZHANG S Y, WANG Y. Melatonin enhances thermotolerance of maize seedlings (Zea mays L.) by modulating antioxidant defense, methylglyoxal detoxification, and osmoregulation systems. Protoplasma, 2019, 256(2): 471-490.
|
[13] |
XU W, CAI S Y, ZHANG Y, WANG Y, AHAMMED G J, XIA X J, SHI K, ZHOU Y H, YU J Q, REITER R J, ZHOU J. Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. Journal of Pineal Research, 2016, 61(4): 457-469.
doi: 10.1111/jpi.12359
pmid: 27484733
|
[14] |
齐晓媛, 王文莉, 胡少卿, 刘梦雨, 郑成淑, 孙宪芝. 外源褪黑素对高温胁迫下菊花光合和生理特性的影响. 应用生态学报, 2021, 32(7): 2496-2504.
doi: 10.13287/j.1001-9332.202107.025
|
|
QI X Y, WANG W L, HU S Q, LIU M Y, ZHENG C S, SUN X Z. Effects of exogenous melatonin on photosynthesis and physiological characteristics of Chrysanthemum seedlings under high temperature stress. Chinese Journal of Applied Ecology, 2021, 32(7): 2496-2504. (in Chinese)
|
[15] |
PARK S, BYEON Y, BACK K. Functional analyses of three ASMT gene family members in rice plants. Journal of Pineal Research, 2013, 55(4): 409-415.
doi: 10.1111/jpi.12088
pmid: 24033370
|
[16] |
ZUO B X, ZHENG X D, HE P L, WANG L, LEI Q, FENG C, ZHOU J Z, LI Q T, HAN Z H, KONG J. Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants. Journal of Pineal Research, 2014, 57(4): 408-417.
|
[17] |
ZHOU K, LI Y, HU L Y, ZHANG J Y, YUE H, YANG S L, LIU Y, GONG X Q, MA F W. Overexpression of MdASMT9, an N- acetylserotonin methyltransferase gene, increases melatonin biosynthesis and improves water-use efficiency in transgenic apple. Tree Physiology, 2022, 42(5): 1114-1126.
|
[18] |
赵世杰. 植物生理学实验指导. 北京: 中国农业科学技术出版社, 2002.
|
|
ZHAO S J. Techniques of Plant Physiological Experiment. Beijing: China Agricultural Science and Technology Press, 2002. (in Chinese)
|
[19] |
SHAH K, KUMAR R G, VERMA S, DUBEY R S. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 2001, 161(6): 1135-1144.
|
[20] |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
|
|
LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment. Beijing: Higher Education Press, 2000. (in Chinese)
|
[21] |
曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导. 北京: 中国轻工业出版社, 2007.
|
|
CAO J K, JIANG W B, ZHAO Y M. Guidance on Postharvest Physiological and Biochemical Experiments of Fruits and Vegetables. Beijing: China Light Industry Press, 2007. (in Chinese)
|
[22] |
CHE R M, LIU Y R, YAN S Q, YANG C, SUN Y B, LIU C H, MA F W. Elongation factor MdEF-Tu coordinates with heat shock protein MdHsp70 to enhance apple thermotolerance. The Plant Journal, 2024, 117(4): 1250-1263.
doi: 10.1111/tpj.16561
pmid: 37991990
|
[23] |
LERNER A B, CASE J D, TAKAHASHI Y. Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. Journal of Biological Chemistry, 1960, 235: 1992-1997.
pmid: 14415935
|
[24] |
KOLÁR J, MACHÁCKOVÁ I. Melatonin in higher plants: Occurrence and possible functions. Journal of Pineal Research, 2005, 39(4): 333-341.
doi: 10.1111/j.1600-079X.2005.00276.x
pmid: 16207287
|
[25] |
BYEON Y, BACK K. Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities. Journal of Pineal Research, 2014, 56(2): 189-195.
|
[26] |
杨永娟. 梅花品种耐旱性差异分析及褪黑素合成基因功能研究[D]. 北京: 北京林业大学, 2021.
|
|
YANG Y J. Analysis on the difference of drought tolerance of plum blossom varieties and study on the function of melatonin synthesis gene[D]. Beijing: Beijing Forestry University, 2021. (in Chinese)
|
[27] |
HASANUZZAMAN M, NAHAR K, ALAM M M, ROYCHOWDHURY R, FUJITA M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 2013, 14(5): 9643-9684.
doi: 10.3390/ijms14059643
pmid: 23644891
|
[28] |
SHARKEY T D. Effects of moderate heat stress on photosynthesis: Importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment, 2005, 28(3): 269-277.
|
[29] |
RAJA V, QADIR S U, ALYEMENI M N, AHMAD P. Impact of drought and heat stress individually and in combination on physio- biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech, 2020, 10(5): 208.
|
[30] |
CHAKI M, BEGARA-MORALES J C, BARROSO J B. Oxidative stress in plants. Antioxidants, 2020, 9(6): 481.
|
[31] |
GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48(12): 909-930.
doi: 10.1016/j.plaphy.2010.08.016
pmid: 20870416
|
[32] |
须文. 褪黑素在调控番茄耐热性中的作用及机制[D]. 杭州: 浙江大学, 2016.
|
|
XU W. Role and mechanism of melatonin in regulating heat tolerance of tomato[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
|
[33] |
JIA C H, YU X J, ZHANG M, LIU Z G, ZOU P, MA J, XU Y C. Application of melatonin-enhanced tolerance to high-temperature stress in cherry radish (Raphanus sativus L. var. radculus pers). Journal of Plant Growth Regulation, 2020, 39(2): 631-640.
|
[34] |
高腾腾. 苹果MdASMT9介导的褪黑素合成对温度和低氮胁迫的调控机制研究[D]. 杨凌: 西北农林科技大学, 2022.
|
|
GAO T T. Regulation mechanism of melatonin synthesis mediated by MdASMT9 on temperature and low nitrogen stress in apple[D]. Yangling: Northwest A & F University, 2022. (in Chinese)
|