| [1] | 
																						 
											  DIXON L K, SUN H, ROBERTS H. African swine fever. Antiviral Research, 2019, 165: 34-41.  
											 												 
																									doi: S0166-3542(19)30096-8
																																					pmid: 30836106
																							 											 | 
										
																													
																						| [2] | 
																						 
											  ALEJO A, MATAMOROS T, GUERRA M, ANDRÉS G. A proteomic atlas of the African swine fever virus particle. Journal of Virology, 2018, 92(23): e01293-18. 
											 											 | 
										
																													
																						| [3] | 
																						 
											  WANG G G, XIE M J, WU W, CHEN Z Z. Structures and functional diversities of ASFV proteins. Viruses, 2021, 13(11): 2124.  
											 												 
																									doi: 10.3390/v13112124
																																			 											 | 
										
																													
																						| [4] | 
																						 
											  WANG N, ZHAO D M, WANG J L, ZHANG Y L, WANG M, GAO Y, LI F, WANG J F, BU Z G, RAO Z H, WANG X X. Architecture of African swine fever virus and implications for viral assembly. Science, 2019, 366(6465): 640-644.  
											 												 
																									doi: 10.1126/science.aaz1439
																																					pmid: 31624094
																							 											 | 
										
																													
																						| [5] | 
																						 
											  DIXON L K, CHAPMAN D A G, NETHERTON C L, UPTON C. African swine fever virus replication and genomics. Virus Research, 2013, 173(1): 3-14.  
											 												 
																									doi: 10.1016/j.virusres.2012.10.020
																																					pmid: 23142553
																							 											 | 
										
																													
																						| [6] | 
																						 
											  王曼, 沈宇清. 非洲猪瘟病毒结构蛋白CD2v的功能研究进展. 中国免疫学杂志, 2021, 37(22): 2734-2737, 2744. 
											 											 | 
										
																													
																						 | 
																						 
											  WANG M, SHEN Y Q. Research progress in function of ASFV structural protein CD2v. Chinese Journal of Immunology, 2021, 37(22): 2734-2737, 2744. (in Chinese) 
											 											 | 
										
																													
																						| [7] | 
																						 
											  MINMA K A, KATORKINA E I, KATORKIN S A, TSYBANOV S Z, MALOGOLOVKIN A S. In silico prediction of B- and T-cell epitopes in the CD2v protein of African swine fever virus (African Swine Fever Virus, Asfivirus, Asfarviridae). African Swine Fever Virus, Asfivirus, Asfarviridae). Problems of Virology, 2020, 65(2): 103-112. 
											 											 | 
										
																													
																						| [8] | 
																						 
											  BURMAKINA G, MALOGOLOVKIN A, TULMAN E R, XU W D, DELHON G, KOLBASOV D, ROCK D L. Identification of T-cell epitopes in African swine fever virus CD2v and C-type lectin proteins. Journal of General Virology, 2019, 100(2): 259-265.  
											 												 
																									doi: 10.1099/jgv.0.001195
																																					pmid: 30628881
																							 											 | 
										
																													
																						| [9] | 
																						 
											  FOWLKES B J, KRUISBEEK A M, TON-THAT H, WESTON M A, COLIGAN J E, SCHWARTZ R H, PARDOLL D M. A novel population of T-cell receptor αβ-bearing thymocytes which predominantly expresses a single Vβ gene family. Nature, 1987, 329(6136): 251-254.  
											 												 
																									doi: 10.1038/329251a0
																																			 											 | 
										
																													
																						| [10] | 
																						 
											  MAKINO Y, KANNO R, ITO T, HIGASHINO K, TANIGUCHI M. Predominant expression of invariant Vα14+ TCR α chain in NK1.1+ T cell populations. International Immunology, 1995, 7(7): 1157-1161.  
											 												 
																									doi: 10.1093/intimm/7.7.1157
																																			 											 | 
										
																													
																						| [11] | 
																						 
											  GODFREY D I, MACDONALD H R, KRONENBERG M, SMYTH M J, VAN KAER L. NKT cells: what’s in a Name? Nature Reviews Immunology, 2004, 4: 231-237.  
											 												 
																									doi: 10.1038/nri1309
																																			 											 | 
										
																													
																						| [12] | 
																						 
											  陆田田, 黄震, 陈章权. CD1d分子的结构与功能. 生命的化学, 2008, 28(2): 159-161. 
											 											 | 
										
																													
																						 | 
																						 
											  LU T T, HUANG Z, CHEN Z Q. Structure and Function of CD1d Molecule. Chemistry of Life, 2008, 28(2): 159-161. (in Chinese) 
											 											 | 
										
																													
																						| [13] | 
																						 
											  KANG S J, CRESSWELL P. Calnexin, calreticulin, and ERp57 cooperate in disulfide bond formation in human CD1d heavy chain. Journal of Biological Chemistry, 2002, 277(47): 44838-44844.  
											 												 
																									doi: 10.1074/jbc.M207831200
																																			 											 | 
										
																													
																						| [14] | 
																						 
											  师义, 王昆华, 刘为军, 徐玉. CD1d分子研究进展. 广东医学, 2012, 33(11): 1678-1680. 
											 											 | 
										
																													
																						 | 
																						 
											  SHI Y, WANG K H, LIU W J, XU Y. Research Progress of CD1d Molecular. Guangdong Medical Journal, 2012, 33(11): 1678-1680. (in Chinese) 
											 											 | 
										
																													
																						| [15] | 
																						 
											  ARGILAGUET J M, PÉREZ-MARTÍN E, NOFRARÍAS M, GALLARDO C, ACCENSI F, LACASTA A, MORA M, BALLESTER M, GALINDO-CARDIEL I, LÓPEZ-SORIA S, ESCRIBANO J M, RECHE P A, RODRÍGUEZ F. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS ONE, 2012, 7(9): e40942.  
											 												 
																									doi: 10.1371/journal.pone.0040942
																																			 											 | 
										
																													
																						| [16] | 
																						 
											  DURANTE-MANGONI E, WANG R J, SHAULOV A, HE Q, NASSER I, AFDHAL N, KOZIEL M J, EXLEY M A. Hepatic CD1d expression in hepatitis C virus infection and recognition by resident proinflammatory CD1d-reactive T cells. The Journal of Immunology, 2004, 173(3): 2159-2166.  
											 												 
																									doi: 10.4049/jimmunol.173.3.2159
																																			 											 | 
										
																													
																						| [17] | 
																						 
											  RENUKARADHYA G J, WEBB T J R, KHAN M A, LIN Y L, DU W J, GERVAY-HAGUE J, BRUTKIEWICZ R R. Virus-induced inhibition of CD1d1-mediated antigen presentation: reciprocal regulation by p38 and ERK. The Journal of Immunology, 2005, 175(7): 4301-4308.  
											 												 
																									doi: 10.4049/jimmunol.175.7.4301
																																			 											 | 
										
																													
																						| [18] | 
																						 
											  WEBB T J, CAREY G B, EAST J E, SUN W J, BOLLINO D R, KIMBALL A S, BRUTKIEWICZ R R. Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses. Pathogens and Disease, 2016, 74(6): ftw055.  
											 												 
																									doi: 10.1093/femspd/ftw055
																																			 											 | 
										
																													
																						| [19] | 
																						 
											  YANG J Q, CHUN T, LIU H Z, HONG S, BUI H, VAN KAER L, WANG C R, SINGH R. CD1d deficiency exacerbates inflammatory dermatitis in MRL-lpr/lpr mice. European Journal of Immunology, 2004, 34(6): 1723-1732.  
											 												 
																									doi: 10.1002/eji.v34:6
																																			 											 | 
										
																													
																						| [20] | 
																						 
											  陈建勇, 沈学文, 张吉翔. CD1d/NKT在抗HBV和HCV中的作用. 生命的化学, 2007, 27(3): 246-248. 
											 											 | 
										
																													
																						 | 
																						 
											  CHEN J Y, SHEN X W, ZHANG J X. Protection of CD1d/NKT against HBV and HCV. Chemistry of Life, 2007, 27(3): 246-248. (in Chinese) 
											 											 | 
										
																													
																						| [21] | 
																						 
											  CHEN X, ZHENG J, LIU C X, LI T T, WANG X, LI X W, BAO M F, LI J N, HUANG L, ZHANG Z X, BU Z G, WENG C J. CD1d facilitates African swine fever virus entry into the host cells via clathrin-mediated endocytosis. Emerging Microbes & Infections, 2023, 12(2): 2220575. 
											 											 | 
										
																													
																						| [22] | 
																						 
											  罗玉子, 孙元, 王涛, 仇华吉. 非洲猪瘟: 我国养猪业的重大威胁. 中国农业科学, 2018, 51(21): 4177-4187.  
											 												 
																									doi: 10.3864/j.issn.0578-1752.2018.21.016
																																			 											 | 
										
																													
																						 | 
																						 
											  LUO Y Z, SUN Y, WANG T, QIU H J. African swine fever: a major threat to the Chinese swine industry. Scientia Agricultura Sinica, 2018, 51(21): 4177-4187. (in Chinese)  
											 												 
																									doi: 10.3864/j.issn.0578-1752.2018.21.016
																																			 											 | 
										
																													
																						| [23] | 
																						 
											  MATAMOROS T, ALEJO A, RODRÍGUEZ J M, HERNÁEZ B, GUERRA M, FRAILE-RAMOS A, ANDRÉS G. African swine fever virus protein pE199L mediates virus entry by enabling membrane fusion and core penetration. mBio, 2020, 11(4): e00789-20. 
											 											 | 
										
																													
																						| [24] | 
																						 
											  ANDRÉS G, GARCı́A-ESCUDERO R, VIÑUELA E, SALAS M L, RODRı́GUEZ J M. African swine fever virus structural protein pE120R is essential for virus transport from assembly sites to plasma membrane but not for infectivity. Journal of Virology, 2001, 75(15): 6758-6768.  
											 												 
																									doi: 10.1128/JVI.75.15.6758-6768.2001
																																					pmid: 11435554
																							 											 | 
										
																													
																						| [25] | 
																						 
											  SÁNCHEZ E G, PÉREZ-NÚÑEZ D, REVILLA Y. Mechanisms of entry and endosomal pathway of African swine fever virus. Vaccines, 2017, 5(4): 42.  
											 												 
																									doi: 10.3390/vaccines5040042
																																			 											 | 
										
																													
																						| [26] | 
																						 
											  CUESTA-GEIJO M Á, GARCÍA-DORIVAL I, DEL PUERTO A, URQUIZA J, GALINDO I, BARRADO-GIL L, LASALA F, CAYUELA A, SORZANO C O S, GIL C, DELGADO R, ALONSO C. New insights into the role of endosomal proteins for African swine fever virus infection. PLoS Pathogens, 2022, 18(1): e1009784.  
											 												 
																									doi: 10.1371/journal.ppat.1009784
																																			 											 | 
										
																													
																						| [27] | 
																						 
											  HERNAEZ B, ALONSO C. Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry. Journal of Virology, 2010, 84(4): 2100-2109.  
											 												 
																									doi: 10.1128/JVI.01557-09
																																					pmid: 19939916
																							 											 | 
										
																													
																						| [28] | 
																						 
											  LIU J Y, GALLO R M, DUFFY C, BRUTKIEWICZ R R. A VP22-null HSV-1 is impaired in inhibiting CD1d-mediated antigen presentation. Viral Immunology, 2016, 29(7): 409-416.  
											 												 
																									doi: 10.1089/vim.2015.0145
																																					pmid: 27327902
																							 											 | 
										
																													
																						| [29] | 
																						 
											  LEE A, FARRAND K J, DICKGREBER N, HAYMAN C M, JÜRS S, HERMANS I F, PAINTER G F. Novel synthesis of α-galactosyl- ceramides and confirmation of their powerful NKT cell agonist activity. Carbohydrate Research, 2006, 341(17): 2785-2798.  
											 												 
																									doi: 10.1016/j.carres.2006.09.006
																																			 											 | 
										
																													
																						| [30] | 
																						 
											  PRIGOZY T I, NAIDENKO O, QASBA P, ELEWAUT D, BROSSAY L, KHURANA A, NATORI T, KOEZUKA Y, KULKARNI A, KRONENBERG M. Glycolipid antigen processing for presentation by CD1d molecules. Science, 2001, 291(5504): 664-667.  
											 												 
																									doi: 10.1126/science.291.5504.664
																																					pmid: 11158680
																							 											 |