| [1] | 
																						 
											  Global tuberculosis report 2022. Geneva: World Health Organization, 2022. 
											 											 | 
										
																													
																						| [2] | 
																						 
											  于嘉霖, 徐雅楠, 韩璐, 马沁梅, 吴晓玲, 邓光存. 脂肪酸结合蛋白4对BCG诱导巨噬细胞自噬的调控作用. 畜牧兽医学报, 2020, 51(9): 2265-2274. 
											 											 | 
										
																													
																						 | 
																						 
											  YU J L, XU Y N, HAN L, MA Q M, WU X L, DENG G C. Role of fatty acid binding protein 4 in regulating macrophage autophagy induced by BCG infection. Chinese Journal of Animal and Veterinary Sciences, 2020, 51(9): 2265-2274. (in Chinese) 
											 											 | 
										
																													
																						| [3] | 
																						 
											  毕秀欣, 韩鹏宇, 马吉雪, 李发. 新冠肺炎疫情对全球结核病防治的影响. 口岸卫生控制, 2022, 27(2): 48-51. 
											 											 | 
										
																													
																						 | 
																						 
											  BI X X, HAN P Y, MA J X, LI F. Impact of COVID-19 on global tuberculosis prevention. Port Health Control, 2022, 27(2): 48-51. (in Chinese) 
											 											 | 
										
																													
																						| [4] | 
																						 
											  PEPPERELL C S. Evolution of tuberculosis pathogenesis. Annual Review of Microbiology, 2022, 76: 661-680.  
											 												 
																									doi: 10.1146/micro.2022.76.issue-1
																																			 											 | 
										
																													
																						| [5] | 
																						 
											  YANG J S, REN B, YANG G, WANG H Y, CHEN G Y, YOU L, ZHANG T P, ZHAO Y P. The enhancement of glycolysis regulates pancreatic cancer metastasis. Cellular and Molecular Life Sciences, 2020, 77(2): 305-321.  
											 												 
																									doi: 10.1007/s00018-019-03278-z
																																					pmid: 31432232
																							 											 | 
										
																													
																						| [6] | 
																						 
											  MENDONCA L E, PERNET E, KHAN N, SANZ J, KAUFMANN E, DOWNEY J, GRANT A, ORLOVA M, SCHURR E, KRAWCZYK C, JONES R G, BARREIRO L B, DIVANGAHI M. Human alveolar macrophage metabolism is compromised during Mycobacterium tuberculosis infection. Frontiers in Immunology, 2022, 13: 1044592.  
											 												 
																									doi: 10.3389/fimmu.2022.1044592
																																			 											 | 
										
																													
																						| [7] | 
																						 
											  GLEESON L E, O’LEARY S M, RYAN D, MCLAUGHLIN A M, SHEEDY F J, KEANE J. Cigarette smoking impairs the bioenergetic immune response to Mycobacterium tuberculosis infection. American Journal of Respiratory Cell and Molecular Biology, 2018, 59(5): 572-579.  
											 												 
																									doi: 10.1165/rcmb.2018-0162OC
																																			 											 | 
										
																													
																						| [8] | 
																						 
											  HUANG L, NAZAROVA E V, TAN S M, LIU Y C, RUSSELL D G. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. The Journal of Experimental Medicine, 2018, 215(4): 1135-1152.  
											 												 
																									doi: 10.1084/jem.20172020
																																			 											 | 
										
																													
																						| [9] | 
																						 
											  HACKETT E E, CHARLES-MESSANCE H, O’LEARY S M, GLEESON L E, MUÑOZ-WOLF N, CASE S, WEDDERBURN A, JOHNSTON D G W, WILLIAMS M A, SMYTH A, OUIMET M, MOORE K J, LAVELLE E C, CORR S C, GORDON S V, KEANE J, SHEEDY F J. Mycobacterium tuberculosis limits host glycolysis and IL-1β by restriction of PFK-M via microRNA-21. Cell Reports, 2020, 30(1): 124-136.e4.  
											 												 
																									doi: 10.1016/j.celrep.2019.12.015
																																			 											 | 
										
																													
																						| [10] | 
																						 
											  BRIDGES M C, DAULAGALA A C, KOURTIDIS A. LNCcation: lncRNA localization and function. The Journal of Cell Biology, 2021, 220(2): e202009045.  
											 												 
																									doi: 10.1083/jcb.202009045
																																			 											 | 
										
																													
																						| [11] | 
																						 
											  于志瑞, 张旭, 牛莎莎, 邓光存, 吴晓玲. LncRNA NR003508通过海绵吸附miR-483-3p并靶向MLKL调控BCG感染小鼠巨噬细胞坏死. 畜牧兽医学报, 2022, 53(9): 3149-3159. 
											 											 | 
										
																													
																						 | 
																						 
											  YU Z R, ZHANG X, NIU S S, DENG G C, WU X L. LncRNA NR003508 regulates BCG-infected mouse macrophages necrosis by the sponge adsorption of miR-483-3p and targeting MLKL. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3149-3159. (in Chinese) 
											 											 | 
										
																													
																						| [12] | 
																						 
											  YAO Q L, XIE Y, XU D D, QU Z L, WU J, ZHOU Y Y, WEI Y Y, XIONG H, ZHANG X L. Lnc-EST12, which is negatively regulated by mycobacterial EST12, suppresses antimycobacterial innate immunity through its interaction with FUBP3. Cellular & Molecular Immunology, 2022, 19(8): 883-897. 
											 											 | 
										
																													
																						| [13] | 
																						 
											  LIU L, YU Z R, MA Q M, YU J L, GONG Z Q, DENG G C, WU X L. LncRNA NR_003508 suppresses Mycobacterium tuberculosis- induced programmed necrosis via sponging miR-346-3p to regulate RIPK1. International Journal of Molecular Sciences, 2023, 24(9): 8016.  
											 												 
																									doi: 10.3390/ijms24098016
																																			 											 | 
										
																													
																						| [14] | 
																						 
											  ROBINSON E K, WORTHINGTON A, POSCABLO D, SHAPLEIGH B, SALIH M M, HALASZ H, SENINGE L, MOSQUEIRA B, SMALIY V, FORSBERG E C, CARPENTER S. lincRNA-Cox2 functions to regulate inflammation in alveolar macrophages during acute lung injury. Journal of Immunology, 2022, 208(8): 1886-1900.  
											 												 
																									doi: 10.4049/jimmunol.2100743
																																					pmid: 35365562
																							 											 | 
										
																													
																						| [15] | 
																						 
											  LIU Q, JIANG J W, FU Y, LIU T, YU Y, ZHANG X F. MiR-129-5p functions as a tumor suppressor in gastric cancer progression through targeting ADAM9. Biomedicine & Pharmacotherapy, 2018, 105: 420-427.  
											 												 
																									doi: 10.1016/j.biopha.2018.05.105
																																			 											 | 
										
																													
																						| [16] | 
																						 
											  GAO B, WANG L J, ZHANG N, HAN M M, ZHANG Y B, LIU H C, SUN D L, XIAO X L, LIU Y F. MiR-129-5p inhibits clear cell renal cell carcinoma cell proliferation, migration and invasion by targeting SPN. Cancer Cell International, 2021, 21(1): 263.  
											 												 
																									doi: 10.1186/s12935-021-01820-3
																																					pmid: 34001147
																							 											 | 
										
																													
																						| [17] | 
																						 
											  SEN K, PATI R, JHA A, MISHRA G P, PRUSTY S, CHAUDHARY S, SWETALIKA S, PODDER S, SEN A, SWAIN M, NANDA R K, RAGHAV S K. NCoR1 controls immune tolerance in conventional dendritic cells by fine-tuning glycolysis and fatty acid oxidation. Redox Biology, 2023, 59: 102575.  
											 												 
																									doi: 10.1016/j.redox.2022.102575
																																			 											 | 
										
																													
																						| [18] | 
																						 
											  DE JESUS A, KEYHANI-NEJAD F, PUSEC C M, GOODMAN L, GEIER J A, STOOLMAN J S, STANCZYK P J, NGUYEN T, XU K, SURESH K V, CHEN Y H, RODRIGUEZ A E, SHAPIRO J S, CHANG H C, CHEN C L, SHAH K P, BEN-SAHRA I, LAYDEN B T, CHANDEL N S, WEINBERG S E, ARDEHALI H. Hexokinase 1 cellular localization regulates the metabolic fate of glucose. Molecular Cell, 2022, 82(7): 1261-1277.e9.  
											 												 
																									doi: 10.1016/j.molcel.2022.02.028
																																					pmid: 35305311
																							 											 | 
										
																													
																						| [19] | 
																						 
											  WIESE E K, HITOSUGI S, LOA S T, SREEDHAR A, ANDRES-BECK L G, KURMI K, PANG Y P, KARNITZ L M, GONSALVES W I, HITOSUGI T. Enzymatic activation of pyruvate kinase increases cytosolic oxaloacetate to inhibit the Warburg effect. Nature Metabolism, 2021, 3(7): 954-968.  
											 												 
																									doi: 10.1038/s42255-021-00424-5
																																					pmid: 34226744
																							 											 | 
										
																													
																						| [20] | 
																						 
											  DING J, KARP J E, EMADI A. Elevated lactate dehydrogenase (LDH) can be a marker of immune suppression in cancer: Interplay between hematologic and solid neoplastic clones and their microenvironments. Cancer Biomarkers, 2017, 19(4): 353-363.  
											 												 
																									doi: 10.3233/CBM-160336
																																					pmid: 28582845
																							 											 | 
										
																													
																						| [21] | 
																						 
											  MURALEEDHARAN R, DASGUPTA B. AMPK in the brain: its roles in glucose and neural metabolism. The FEBS Journal, 2022, 289(8): 2247-2262.  
											 												 
																									doi: 10.1111/febs.v289.8
																																			 											 | 
										
																													
																						| [22] | 
																						 
											  杨舟, 林书典, 詹宇威, 肖璐, 符克英, 黄小蝶. LncRNA MIR22HG 通过海绵吸附miR-22-5p对类风湿关节炎成纤维样滑膜细胞增殖、凋亡和炎性反应的影响. 安徽医科大学学报, 2023, 58(3): 405-412. 
											 											 | 
										
																													
																						 | 
																						 
											  YANG Z, LIN S D, ZHAN Y W, XIAO L, FU K Y, HUANG X D. Effects of lncRNA MIR22HG on proliferation, apoptosis and inflammatory response of rheumatoid arthritis fibroblast-like synoviocytes by sponge adsorption of miR-22-5p. Acta Universitatis Medicinalis Anhui, 2023, 58(3): 405-412. (in Chinese) 
											 											 | 
										
																													
																						| [23] | 
																						 
											  BOSEDASGUPTA S, PIETERS J. Inflammatory stimuli reprogram macrophage phagocytosis to macropinocytosis for the rapid elimination of pathogens. PLoS Pathogens, 2014, 10(1): e1003879.  
											 												 
																									doi: 10.1371/journal.ppat.1003879
																																			 											 | 
										
																													
																						| [24] | 
																						 
											  HOWARD N C, KHADER S A. Immunometabolism during Mycobacterium tuberculosis infection. Trends in Microbiology, 2020, 28(10): 832-850.  
											 												 
																									doi: 10.1016/j.tim.2020.04.010
																																			 											 | 
										
																													
																						| [25] | 
																						 
											  RANSOHOFF J D, WEI Y N, KHAVARI P A. The functions and unique features of long intergenic non-coding RNA. Nature Reviews Molecular Cell Biology, 2018, 19(3): 143-157.  
											 												 
																									doi: 10.1038/nrm.2017.104
																																					pmid: 29138516
																							 											 | 
										
																													
																						| [26] | 
																						 
											  NELSON B R, MAKAREWICH C A, ANDERSON D M, WINDERS B R, TROUPES C D, WU F F, REESE A L, MCANALLY J R, CHEN X W, KAVALALI E T, CANNON S C, HOUSER S R, BASSEL- DUBY R, OLSON E N. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science, 2016, 351(6270): 271-275.  
											 												 
																									doi: 10.1126/science.aad4076
																																					pmid: 26816378
																							 											 | 
										
																													
																						| [27] | 
																						 
											  WEI L, LIU K, JIA Q Z, ZHANG H, BIE Q L, ZHANG B. The roles of host noncoding RNAs in Mycobacterium tuberculosis infection. Frontiers in Immunology, 2021, 12: 664787.  
											 												 
																									doi: 10.3389/fimmu.2021.664787
																																			 											 | 
										
																													
																						| [28] | 
																						 
											 
											 											 | 
										
																													
																						 | 
																						 
											 RAN H B,  ZHAO L L,  WANG H,  CHAI Z X,  WANG J K,  WANG J B,  WU Z J,  ZHONG J C. Effects of lnc FAM200B on the lipid deposition in intramuscular preadipocytes of yak.  Scientia Agricultura Sinica,  2022,  55(13): 2654-2666. doi:  10.3864/j.issn.0578-1752.2022.13.014. (in Chinese)  
											 											 | 
										
																													
																						| [29] | 
																						 
											 
											 											 | 
										
																													
																						 | 
																						 
											 YU B J,  DENG Z Z,  XIN G S,  CAI Z Y,  GU Y L,  ZHANG J. Correlation analysis of inosine monophosphate specific deposition related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan chicken muscle tissue.  Scientia Agricultura Sinica,  2021,  54(19): 4229-4242. doi:  10.3864/j.issn.0578-1752.2021.19.017. (in Chinese)  
											 											 | 
										
																													
																						| [30] | 
																						 
											  JIANG F, LOU J, ZHENG X M, YANG X Y. LncRNA MIAT regulates autophagy and apoptosis of macrophage infected by Mycobacterium tuberculosis through the miR-665/ULK1 signaling axis. Molecular Immunology, 2021, 139: 42-49.  
											 												 
																									doi: 10.1016/j.molimm.2021.07.023
																																			 											 | 
										
																													
																						| [31] | 
																						 
											  LI D Y, GAO C Y, ZHAO L, ZHANG Y M. Inflammatory response is modulated by lincRNACox2 via the NF-κB pathway in macrophages infected by Mycobacterium tuberculosis. Molecular Medicine Reports, 2020, 21(6): 2513-2521. 
											 											 | 
										
																													
																						| [32] | 
																						 
											  HE Y N, WANG Y T, JIA X B, LI Y X, YANG Y, PAN L F, ZHAO R, HAN Y, WANG F, GUAN X Y, HOU T Z. Glycolytic reprogramming controls periodontitis-associated macrophage pyroptosis via AMPK/ SIRT1/NF-κB signaling pathway. International Immunopharmacology, 2023, 119: 110192.  
											 												 
																									doi: 10.1016/j.intimp.2023.110192
																																			 											 | 
										
																													
																						| [33] | 
																						 
											  CHIN W Y, HE C Y, CHOW T W, YU Q Y, LAI L C, MIAW S C. Adenylate kinase 4 promotes inflammatory gene expression via Hif1α and AMPK in macrophages. Frontiers in Immunology, 2021, 12: 630318.  
											 												 
																									doi: 10.3389/fimmu.2021.630318
																																			 											 | 
										
																													
																						| [34] | 
																						 
											  GAUTHIER T, YAO C, DOWDY T, JIN W W, LIM Y J, PATIÑO L C, LIU N, OHLEMACHER S I, BYNUM A, KAZMI R, BEWLEY C A, MITROVIC M, MARTIN D, MORELL R J, ECKHAUS M, LARION M, TUSSIWAND R, O’SHEA J J, CHEN W J. TGF-β uncouples glycolysis and inflammation in macrophages and controls survival during sepsis. Science Signaling, 2023, 16(797): eade0385.  
											 												 
																									doi: 10.1126/scisignal.ade0385
																																			 											 | 
										
																													
																						| [35] | 
																						 
											  Ó MAOLDOMHNAIGH C, COX D J, PHELAN J J, MITERMITE M, MURPHY D M, LEISCHING G, THONG L, O’LEARY S M, GOGAN K M, MCQUAID K, COLEMAN A M, GORDON S V, BASDEO S A, KEANE J. Lactate alters metabolism in human macrophages and improves their ability to kill Mycobacterium tuberculosis. Frontiers in Immunology, 2021, 12: 663695.  
											 												 
																									doi: 10.3389/fimmu.2021.663695
																																			 											 | 
										
																													
																						| [36] | 
																						 
											  方舒. LncRNA-Cox2对BCG诱导RAW264.7细胞自噬的调控作用[D]. 西宁: 宁夏大学, 2021. 
											 											 | 
										
																													
																						 | 
																						 
											  FANG S. Regulation of LncRINA-Cox2 on autophagy of RAW264.7 induced by Bacillus Calmette-Guérin[D]. Xining: Ningxia University, 2021. (in Chinese) 
											 											 | 
										
																													
																						| [37] | 
																						 
											  XU Y N, YU J L, MA C J, GONG Z Q, WU X L, DENG G C. Impact of knockdown LincRNA-Cox2 on apoptosis of macrophage infected with Bacillus Calmette-Guérin. Molecular Immunology, 2021, 130: 85-95.  
											 												 
																									doi: 10.1016/j.molimm.2020.11.008
																																			 											 |