中国农业科学

• • 上一篇    

最新录用:基于综合指标协同优化的冬小麦植株水分含量预测

高晨凯1,刘水苗1,李煜铭1,吴鹏年2,王艳丽2,刘长硕1,乔毅博1,关小康1,王同朝1*,温鹏飞1*
  

  1. 1河南农业大学农学院,郑州 4500462河南农业大学资源与环境学院,郑州 450046
  • 发布日期:2023-06-13

Prediction of Water Content of Winter Wheat Plant Based on Comprehensive Index Synergetic Optimization

GAO ChenKai1, LIU ShuiMiao1, LI YuMing1, WU PengNian2, WANG YanLi2, LIU ChangShuo1, QIAO YiBo1, GUAN XiaoKang1, WANG TongChao1*, WEN PengFei1* #br#   

  1. 1Agronomy College of Henan Agriculture University, Zhengzhou 450046; 2Resources and Environment College of Henan Agriculture University, Zhengzhou 450046
  • Online:2023-06-13

摘要: 【目的】基于冬小麦冠层温度参数、形态指标和生理指标3种综合指标构建不同生育时期冬小麦植株含水量反演模型,探寻更全面精准的水分亏缺监测方法,为冬小麦抗旱提供理论依据。【方法】以冬小麦为研究对象,设置3个不同水分处理,2个小麦品种洛麦22和周麦27。分别获取拔节期、孕穗期和灌浆期冬小麦的冠层温度参数(冠层温度标准差(CTSD)和作物水分胁迫指数(CWSI))、形态指标(株高、茎粗、地上生物量和LAI)和生理指标(气孔导度、蒸腾速率和光合速率),按照平均权重原则分别构建综合温度参数指标(comprehensive temperature parameter indicators,CTPI)、综合生长指标(comprehensive growth indicators,CGI)和综合生理指标(comprehensive physiological indicators,CPI)。分析植株含水量(PWC)与综合指标之间的相关关系,并采用多元线性回归(MLR)、偏最小二乘回归(PLSR)和支持向量机(SVM)方法分生育时期构建基于综合指标的PWC反演模型。【结果】不同生育时期内冬小麦的冠层温度参数、形态指标及生理指标水分亏缺处理(W1、W2)较对照处理(W3)均表现出显著性差异(P0.05)。孕穗期和灌浆期的综合指标(CTPI、CGI和CPI)与PWC有较好的相关关系,相关系数(r)分别为-0.70(-0.78)、0.84(0.80)和0.83(0.76)。采用MLR、PLSR和SVM方法,基于综合指标(CTPI、CGI和CPI)构建PWC反演预测模型均具有较高的预测精度,其中以SVM构建的孕穗期PWC模型最优,R2calR2val)、RMSEcalRMSEval)和nRMSEcalnRMSEval)分别为0.878(0.815)、0.021(0.024)、3.10%(3.33%)。【结论】基于综合指标(CTPI、CGI和CPI)构建的SVM-PWC模型能够很好地预测冬小麦各生育时期水分亏缺状况,可为黄淮海区域冬小麦防旱抗旱提供理论依据。


关键词: 冬小麦, 水分亏缺, 综合指标, 植株含水量, 支持向量机

Abstract: 【ObjectiveThe objective of this study is to establishment of inversion models for winter wheat plant water content at different growth stages based on three comprehensive indicators of winter wheat canopy temperature, morphology, and physiology, explore more comprehensive and accurate water deficit monitoring methods to provide theoretical basis for drought resistance work in winter wheat.【Method】The winter wheat was used as the research object, and three water treatments were set up, two wheat varieties: Luomai 22 and Zhoumai 27. Canopy temperature parameters (canopy temperature standard deviation (CTSD) and crop water stress index (CWSI)), morphological indicators (plant height, stem diameter, aboveground biomass, and LAI) and physiological indicators (stomatal conductance, transpiration rate, and photosynthetic rate) of winter wheat were obtained at jointing, booting, and filling stages, respectively. comprehensive temperature parameter indicators (CTPI), comprehensive growth indicators (CGI) and comprehensive physiological indicators (CPI) based on the average weight principle were constructed. the correlation between plant water content (PWC) and comprehensive indicators was analyzed, and multiple linear regression (MLR), partial least squares recurrence (PLSR) and support vector machine (SVM) methods were used to construct the PWC inversion model based on comprehensive indicators according to the growth period.【ResultThe canopy temperature parameters, morphology and physiological indexes of winter wheat in different growth stages showed significant differences between water deficit treatment (W1, W2) and control treatment (W3) (P<0.05). Comprehensive indicators (CTPI, CGI and CPI) at booting and filling stages have a good correlation with PWC, with correlation coefficients (r) of -0.70 (-0.78), 0.84 (0.80) and 0.83 (0.76), respectively. Using MLR, PLSR and SVM methods, the PWC inversion prediction model based on comprehensive indicators (CTPI, CGI and CPI) has high prediction accuracy, among which the PWC model built by SVM is the best, R2cal (R2val), RMSEcal (RMSEval), and nRMSEcal (nRMSEval) were 0.878 (0.815), 0.021 (0.024), and 3.10% (3.33%), respectively.【Conclusion】The SVM-PWC model based on the comprehensive indicators CTPI, CGI and CPI can well predict the water deficit of winter wheat at different growth stages, and provide theoretical basis for drought prevention and drought resistance of winter wheat in the Huang-Huai-Hai region.


Key words: winter wheat, water deficit, comprehensive index, plant water content, support vector machine