中国农业科学 ›› 2023, Vol. 56 ›› Issue (3): 453-465.doi: 10.3864/j.issn.0578-1752.2023.03.005
收稿日期:
2022-05-20
接受日期:
2022-10-08
出版日期:
2023-02-01
发布日期:
2023-02-14
通信作者:
马春晖,E-mail:chunhuima@126.com。 张前兵,E-mail:qbz102@163.com
联系方式:
赵建涛,E-mail:1513192544@qq.com。
基金资助:
ZHAO JianTao(), YANG KaiXin, WANG XuZhe, MA ChunHui(
), ZHANG QianBing(
)
Received:
2022-05-20
Accepted:
2022-10-08
Published:
2023-02-01
Online:
2023-02-14
摘要:
【目的】探究连续3年施用磷肥后对紫花苜蓿叶片养分吸收量、光合色素含量、气孔开度及抗氧化系统的影响,为紫花苜蓿高效生产提供科学施肥方法。【方法】2019—2021年,以‘WL366HQ’紫花苜蓿为试验材料,在石河子大学牧草试验站连续开展为期3年的田间试验。试验设置磷肥添加量分别为0(对照,CK)、50 kg·hm-2(低磷,LP)、100 kg·hm-2(中磷,MP)和150 kg·hm-2 (高磷,HP),共4个磷肥处理。于苜蓿初花期进行取样,测定干草产量、叶片氮磷含量、色素含量、气孔开度、抗氧化酶活性以及氧化物质等指标。【结果】连续施加磷肥3年后,叶片的氮磷含量、光合色素含量及气孔开度显著增加(P<0.05),其中叶片氮磷含量在中磷处理下最高,分别为54.74和2.99 g·kg-1;叶绿素a和叶绿素b的含量均在中磷处理下最高,类胡萝卜素含量在低磷或中磷处理下最高,且均在CK最低;气孔开度在中磷处理下达到最大,且显著高于CK(P<0.05)。因此,磷肥对苜蓿叶片的形态和生理特性有不同的影响,且中磷处理显著影响苜蓿叶片的光合生理特性(P<0.05)。合理添加磷肥可以提高苜蓿叶片抗氧化酶的活性并降低氧化物质的含量,超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性均在中磷处理达到最高,分别为162.55、406.40和147.13 U·g-1,且显著高于CK(P<0.05);丙二醛(MDA)、过氧化氢(H2O2)和脯氨酸(Pro)含量均在中磷处理下最低,分别为2.38和1.04 μmol·g-1以及56.85 μg·g-1。根据Pearson相关性分析可知,苜蓿叶片全氮和全磷含量与叶绿素含量、类胡萝卜素含量、气孔开度、SOD和POD活性显著正相关(P<0.05),与MDA和H2O2含量呈显著负相关(P<0.05)。综合评价表明,施磷处理的主成分得分排序为:中磷>高磷>低磷>对照。【结论】合理施加磷肥增加苜蓿叶片的营养特性及光合生理特性,从而避免其他环境因子带来的胁迫作用,增强苜蓿的适应能力,使苜蓿更好地适应外界环境变化。综合考虑紫花苜蓿的叶片形态、光合生理特性及抗氧化酶和氧化物质等因素,本试验施磷量为100 kg·hm-2较为适宜。
赵建涛, 杨开鑫, 王旭哲, 马春晖, 张前兵. 施磷对苜蓿叶片生理参数及抗氧化能力的影响[J]. 中国农业科学, 2023, 56(3): 453-465.
ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves[J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
表1
不同施磷水平下苜蓿叶片1—4茬气孔数、长度、宽度和开度的动态变化"
茬次 Stubble time | 处理 Treatment | 气孔数 Stomatal number | 气孔长度 Stomatal longitudinal diameter (μm) | 气孔宽度 Stomatal transverse diameter (μm) | 气孔开度 Stomatal aperture (μm2) |
---|---|---|---|---|---|
第1茬 First cut | CK | 17.5±0.77a | 29.43±0.76b | 10.00±0.44b | 230.97±11.31b |
LP | 18.3±0.77a | 29.51±0.70b | 11.15±0.35a | 248.78±6.56b | |
MP | 19.4±1.25a | 32.80±0.79a | 11.29±0.30a | 290.58±9.81a | |
HP | 17.6±0.75a | 29.54±0.50b | 9.77±0.34b | 225.93±6.46b | |
第2茬 Second cut | CK | 15.3±0.49b | 28.38±0.50b | 6.98±0.18b | 155.87±5.59b |
LP | 19.7±0.99a | 30.25±0.47a | 8.52±0.16a | 202.50±4.88a | |
MP | 19.8±0.79a | 30.49±0.26a | 8.54±0.14a | 204.46±6.75a | |
HP | 15.0±0.52b | 28.36±0.38b | 7.05±0.24b | 156.62±4.30b | |
第3茬 Third cut | CK | 16.9±0.77a | 30.93±0.69bc | 10.14±0.35a | 246.23±11.80a |
LP | 19.1±0.77a | 31.21±0.61b | 10.30±0.34a | 251.53±6.98a | |
MP | 19.6±1.25a | 33.30±0.78a | 10.43±0.23a | 272.60±9.58a | |
HP | 18.5±0.74a | 29.04±0.50c | 9.41±0.34a | 213.95±6.36b | |
第4茬 Fourth cut | CK | 19.7±2.04ab | 28.83±1.15a | 6.27±0.34bc | 141.08±7.72c |
LP | 20.7±0.40ab | 30.69±0.50a | 7.06±0.21b | 170.04±5.79b | |
MP | 22.7±1.18a | 30.52±0.67a | 8.33±0.40a | 201.03±13.86a | |
HP | 17.8±0.83b | 29.65±0.51a | 6.00±0.26c | 139.43±5.50c |
[1] | SCASTA J D, TROSTLE C L, FOSTER M A. Evaluating alfalfa (medicago sativa L.) cultivars for salt tolerance using laboratory, greenhouse and field methods. Journal of Agricultural Science, 2012, 4(6): 90-103. |
[2] |
CHEN Y H, HAN W X, TANG L Y, TANG Z Y, FANG J Y. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography, 2013, 36(2): 178-184.
doi: 10.1111/j.1600-0587.2011.06833.x |
[3] | RUSSELL R S, RICKSON J B, ADAMS S N. Istopic equilibria between phosphates in soil and their significance in the assessment of fertility by tracer methods. European Journal of Soil Science, 1954, 5(1): 85-105. |
[4] | 刘俊英, 回金峰, 孙梦瑶, 刘选帅, 鲁为华, 马春晖, 张前兵. 施磷水平和接种AMF与解磷细菌对苜蓿产量及磷素利用效率的影响. 农业工程学报, 2020, 36(19): 142-149. |
LIU J Y, HUI J F, SUN M Y, LIU X S, LU W H, MA C H, ZHANG Q B. Effects of phosphorus application and inoculation arbuscular mycorrhizae fungi (AMF) and phosphate solubilizing bacteria on dry matter yield and phosphorus use efficiency of alfalfa. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 142-149. (in Chinese) | |
[5] | 毕银丽, 孙江涛, YPYSZHAN Z, 解文武, 于淼. 不同施磷水平下接种菌根玉米营养状况及光谱特征分析. 煤炭学报, 2016, 41(5): 1227-1235. |
BI Y L, SUN J T, YPYSZHAN Z, XIE W W, YU M. Hyperspectral characterization and nutrition condition of maize inoculated with arbuscular mycorrhiza in different phosphorus levels. Journal of China Coal Society, 2016, 41(5): 1227-1235. (in Chinese) | |
[6] |
DOS SANTOS E F, ZANCHIM B J, DE CAMPOS A G, GARRONE R F, LAVRES J. Photosynthesis rate, chlorophyll content and initial development of physic nut without micronutrient fertilization. Revista Brasileira de Ciência do Solo, 2013, 37(5): 1334-1342.
doi: 10.1590/S0100-06832013000500022 |
[7] | 任立飞, 张文浩, 李衍素. 低磷胁迫对黄花苜蓿生理特性的影响. 草业学报, 2012, 21(3): 242-249. |
REN L F, ZHANG W H, LI Y S. Effect of phosphorus deficiency on physiological properties of Medicago falcata. Acta Prataculturae Sinica, 2012, 21(3): 242-249. (in Chinese) | |
[8] |
SYNAN F A, SUZANNE M C, JEFFREY J V. Phosphate nutrition and defoliation effects on growth and root physiology of alfalfa. Journal of Plant Nutrition, 2006, 29(8): 1387-1403.
doi: 10.1080/01904160600830191 |
[9] |
齐敏兴, 刘晓静, 张晓磊, 刘艳楠. 不同磷水平对紫花苜蓿光合作用和根瘤固氮特性的影响. 草地学报, 2013, 21(3): 512-516.
doi: 10.11733/j.issn.1007-0435.2013.03.016 |
QI M X, LIU X J, ZHANG X L, LIU Y N. Effects of different phosphorus levels on photosynthesis and root nodule nitrogen-fixing characteristic of alfalfa. Acta Agrectir Sinica, 2013, 21(3): 512-516. (in Chinese) | |
[10] |
BOYCE R L, LARSON J R, SANFORD R L. Phosphorus and nitrogen limitations to photosynthesis in Rocky Mountain bristlecone pine (Pinas aristata) in Colorado. Tree Physiology, 2006, 26(11): 1477-1486.
doi: 10.1093/treephys/26.11.1477 |
[11] |
ZHANG W, CHEN X X, LIU Y M, LIU D Y, DU Y F, CHEN X P, ZOU C Q. The role of phosphorus supply in maximizing the leaf area, photosynthetic rate, coordinated to grain yield of summer maize. Field Crops Research, 2018, 219: 113-119.
doi: 10.1016/j.fcr.2018.01.031 |
[12] |
ASHRAF M, HARRIS P J C. Photosynthesis under stressful environments: An overview. Photosynthetica, 2013, 51(2): 163-190.
doi: 10.1007/s11099-013-0021-6 |
[13] | ZHAO W S, SUN Y L, KJELGREN R, LIU X P. Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit. Acta Physiologiae Plantarum, 2015, 37: 1074. |
[14] |
LAWSON T, BLATT M R. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology, 2014, 164(4): 1556-1570.
doi: 10.1104/pp.114.237107 pmid: 24578506 |
[15] |
WOLZ K J, WERTIN T M, ABORDO M, WANG D, LEAKEY A D. Diversity in stomatal function is integral to modelling plant carbon and water fluxes. Nature Ecology and Evolution, 2017, 1(9): 1292-1298.
doi: 10.1038/s41559-017-0238-z pmid: 29046531 |
[16] | CAI Q, JI C J, YAN Z B, JIANG X X, FANG J Y. Anatomical responses of leaf and stem of Arabidopsis thaliana to nitrogen and phosphorus addition. Journal of Plant Research, 2017, 13(6): 1035-1045. |
[17] | 高宏云. 棉花冠层“铃—叶系统”光合生理特性及其对滴灌量的响应[D]. 石河子: 石河子大学, 2020. |
GAO H Y. Photosynthetic physiological characteristics of cotton canopy “boll-leaf system” and the response to drip irrigation amount[D]. Shihezi: Shihezi University, 2020. (in Chinese) | |
[18] | 张燕, 王红兰, 蒋舜媛, 孙辉, 杨萍, 杜玖珍, 孙洪兵, 周毅. 不同氮浓度对羌活幼苗生长及抗氧化酶系统的效应. 中国实验方剂学杂志, 2018, 24(7): 38-44. |
ZHANG Y, WANG H L, JIANG S Y, SUN H, YANG P, DU J Z, SUN H B, ZHOU Y. Effect of different nitrogen concentrations on growth and antioxidant enzymes activity in Notopterygium incisum seedling in cultivation matrix. Chinese Journal of Experimental Traditional Medical Formulae, 2018, 24(7): 38-44. (in Chinese) | |
[19] | 魏婧, 徐畅, 李可欣, 贺洪军, 徐启江. 超氧化物歧化酶的研究进展与植物抗逆性. 植物生理学报, 2020, 56(12): 2571-2584. |
WEI J, XU C, LI K X, HE H J, XU Q J. Progress on superoxide dismutase and plant stress resistance. Plant Physiology Journal, 2020, 56(12): 2571-2584. (in Chinese) | |
[20] |
SU B Q, WANG L F, SHANGGUAN Z P. Morphological and physiological responses and plasticity in Robinia pseudoacacia to the coupling of water, nitrogen and phosphorus. Journal of Plant Nutrition and Soil Science, 2021, 184(2): 271-281.
doi: 10.1002/jpln.202000465 |
[21] | 杨妮, 万绮雯, 李逸民, 韩妙华, 腾瑞敏, 刘洁霞, 庄静. 外源亚精胺对盐胁迫下茶树光合特性及关键酶基因表达的影响. 园艺学报, 2022, 49(2): 378-394. |
YANG N, WAN Q W, LI Y M, HAN M H, TENG R M, LIU J X, ZHUANG J. Effects of exogenous spermidine on photosynthetic characteristics and gene expression of key enzymes under salt stress in tea plant. Acta Horticulturae Sinica, 2022, 49(2): 378-394. (in Chinese) | |
[22] |
ZHANG M, LIU W, LI C H, SHAO T T, JIANG X, ZHAO H Z, AI W T. Postharvest hot water dipping and hot water forced convection treatments alleviate chilling injury for zucchini fruit during cold storage. Scientia Horticulturae, 2019, 249: 219-227.
doi: 10.1016/j.scienta.2019.01.058 |
[23] | AERTS R, CHAPIN F S. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 2000, 30: 1-67. |
[24] |
THOMPSON J B, SLOT M, DALLING J W, WINTER K, TURNER B L, ZALAMEA P C. Species-specific effects of phosphorus addition on tropical tree seedling response to elevated CO2. Functional Ecology, 2019, 33(10): 1871-1881.
doi: 10.1111/1365-2435.13421 |
[25] | 陈婷婷, 符卫蒙, 余景, 奉保化, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系. 中国农业科学, 2022, 55(3): 467-478. |
CHEN T T, FU W M, YU J, FENG B H, LI G Y, FU G F, TAO L X. The photosynthesis characteristics of colored rice leaves and its relation with antioxidant capacity and anthocyanin content. Scientia Agricultura Sinica, 2022, 55(3): 467-478. (in Chinese) | |
[26] |
SERGI M B, TANA J M, LEONOR A. Enhanced photo- and antioxidative protection, and hydrogen peroxide accumulation in drought-stressed Cistus clusii and Cistus albidus plants. Tree Physiology, 2003, 23: 1-12.
doi: 10.1093/treephys/23.1.1 |
[27] | 陆雯芸, 房克, 边红武, 朱睦元. 气孔发育及其调控因素的研究进展. 植物生理学报, 2016, 52(6): 782-788. |
LU W Y, FANG K, BIAN H W, ZHU M Y. Advances in stomatal development and its regulation factors. Plant Physiology Journal, 2016, 52(6): 782-788. (in Chinese) | |
[28] |
RODRIGUEZ D, SANTA MARIA G E, POMAR M C. Phosphorus deficiency affects the early development of wheat plants. Journal of Agronomy and Crop Science, 1994, 173(1): 69-72.
doi: 10.1111/j.1439-037X.1994.tb00575.x |
[29] |
王宏亮, 郭思义, 王棚涛, 宋纯鹏. 植物气孔发育机制研究进展. 植物学报, 2018, 53(2): 164-174.
doi: 10.11983/CBB17033 |
WANG H L, GUO S Y, WANG P T, SONG C P. Research progress in stomatal development mechanism. Chinese Bulletin of Botany, 2018, 53(2): 164-174. (in Chinese) | |
[30] |
CORNIC G. Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends in Plant Science, 2000, 5(5): 187-188.
doi: 10.1016/S1360-1385(00)01625-3 |
[31] |
XU Z Z, ZHOU G S. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany, 2008, 59(12): 3317-3325.
doi: 10.1093/jxb/ern185 pmid: 18648104 |
[32] | 郑云普, 常志杰, 范晓懂, 张运鑫, 刘亮, 陈文娜, 刘媛媛, 郝立华. CO2浓度升高和磷素亏缺对黑麦草气孔特征及气体交换参数的影响. 农业工程学报, 2021, 37(18): 82-89. |
ZHENG Y P, CHANG Z J, FAN X D, ZHANG Y X, LIU L, CHEN W N, LIU Y Y, HAO L H. Effects of CO2 concentration increase and phosphorus deficiency on the stomatal traits and leaf gas exchange parameters of ryegrass. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 82-89. (in Chinese) | |
[33] |
ZHAO W S, SUN Y L, KJELGREN R, LIU X P. Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit. Acta Physiologiae Plantarum, 2015, 37(1): 1-9.
doi: 10.1007/s11738-014-1746-y |
[34] |
ULLAH A, SUN H, YANG X Y, ZHANG X L. Drought coping strategies in cotton: Increased crop per drop. Plant Biotechnology Journal, 2017, 15(3): 271-284.
doi: 10.1111/pbi.12688 pmid: 28055133 |
[35] |
YU Q, RENGEL Z. Drought and salinity differentially influence activities of superoxide dismutase in narrow-leafed lupins. Plant Science, 1999, 142: 1-11.
doi: 10.1016/S0168-9452(98)00246-5 |
[36] |
ISRAR D, MUSTAFA G, KHAN K S, SHAHZAD M, AHMAD N, MASOOD S. Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation. Plant Physiology and Biochemistry, 2016, 108: 304-312.
doi: 10.1016/j.plaphy.2016.07.023 |
[37] |
SONG Y Z, KONG F F, XUE Y, QIN B Q. Responses of chlorophyll and MDA of Vallisneria natans to nitrogen and phosphorus availability and epiphytic algae. Journal of Freshwater Ecology, 2015, 30(1): 85-97.
doi: 10.1080/02705060.2014.989554 |
[1] | 沈开勤, 刘倩, 杨国涛, 陈虹, 梁成, 赖鹏, 李冲, 王学春, 胡运高. 减量施磷对土壤磷库组成及解磷微生物的影响[J]. 中国农业科学, 2023, 56(15): 2941-2953. |
[2] | 郭燕, 张树航, 李颖, 张馨方, 王广鹏. 中国板栗36个叶片表型性状的多样性[J]. 中国农业科学, 2022, 55(5): 991-1009. |
[3] | 苏倩,杜文宣,马琳,夏亚迎,李雪,祁智,庞永珍. 紫花苜蓿MsCIPK2的克隆及功能分析[J]. 中国农业科学, 2022, 55(19): 3697-3709. |
[4] | 张云秀,蒋旭,尉春雪,蒋学乾,卢栋宇,龙瑞才,杨青川,王珍,康俊梅. 紫花苜蓿高迁移率族蛋白基因MsHMG-Y调控花期的功能分析[J]. 中国农业科学, 2022, 55(16): 3082-3092. |
[5] | 向晓玲,陈松鹤,杨洪坤,杨永恒,樊高琼. 秸秆覆盖与施磷对丘陵旱地小麦产量和磷素吸收利用效应的影响[J]. 中国农业科学, 2021, 54(24): 5194-5205. |
[6] | 马琳,温红雨,王学敏,高洪文,庞永珍. 紫花苜蓿MsMAX2的克隆及功能研究[J]. 中国农业科学, 2021, 54(19): 4061-4069. |
[7] | 薛华龙,娄梦玉,李雪,王飞,郭彬彬,郭大勇,李海港,焦念元. 施磷水平对不同茬口下冬小麦生长发育及产量的影响[J]. 中国农业科学, 2021, 54(17): 3712-3725. |
[8] | 李昕芫, 娄金秀, 刘清源, 胡健, 张英俊. 中国东北和华北地区紫花苜蓿根瘤菌遗传多样性研究[J]. 中国农业科学, 2021, 54(16): 3393-3405. |
[9] | 庞保刚,曹楠,周治国,赵文青. 不同磷敏感棉花品种临界磷浓度稀释模型与磷营养诊断[J]. 中国农业科学, 2020, 53(22): 4561-6130. |
[10] | 康俊梅,张俏燕,蒋旭,王珍,张铁军,龙瑞才,崔会婷,杨青川. 紫花苜蓿MsSQE1的克隆及对皂甙合成的功能分析[J]. 中国农业科学, 2020, 53(2): 247-260. |
[11] | 崔苗苗,马琳,张锦锦,王筱,庞永珍,王学敏. 紫花苜蓿MsDWF4的表达特性及耐盐性效应[J]. 中国农业科学, 2020, 53(18): 3650-3664. |
[12] | 蒋旭,崔会婷,王珍,张铁军,龙瑞才,杨青川,康俊梅. 紫花苜蓿MsNST的克隆及对木质素与纤维素合成的功能分析[J]. 中国农业科学, 2020, 53(18): 3818-3832. |
[13] | 刘佼佼,王学敏,马琳,崔苗苗,曹晓宇,赵威. 紫花苜蓿MsWRKY42的分离、鉴定及其对非生物胁迫的响应[J]. 中国农业科学, 2020, 53(17): 3455-3466. |
[14] | 肖知新,王洋,刘国富,巩皓,李丹丹,巩林,白珍建,崔国文. 寒地黑土区春季施肥期对紫花苜蓿生产性能及营养品质的影响[J]. 中国农业科学, 2020, 53(13): 2668-2677. |
[15] | 巩皓,杨柳,李丹丹,刘国富,肖知新,吴清莹,崔国文. 寒地黑土农区紫花苜蓿生产与品质对施肥和刈割频次的响应及效益分析[J]. 中国农业科学, 2020, 53(13): 2657-2667. |
|