中国农业科学 ›› 2023, Vol. 56 ›› Issue (1): 64-78.doi: 10.3864/j.issn.0578-1752.2023.01.005
柴海燕1,2(),贾娇2,白雪2,孟玲敏2,张伟2,金嵘1,2,吴宏斌2,苏前富2(
)
收稿日期:
2022-07-21
接受日期:
2022-09-06
出版日期:
2023-01-01
发布日期:
2023-01-17
通讯作者:
苏前富
作者简介:
柴海燕,E-mail:基金资助:
CHAI HaiYan1,2(),JIA Jiao2,BAI Xue2,MENG LingMin2,ZHANG Wei2,JIN Rong1,2,WU HongBin2,SU QianFu2(
)
Received:
2022-07-21
Accepted:
2022-09-06
Online:
2023-01-01
Published:
2023-01-17
Contact:
QianFu SU
摘要:
【目的】明确吉林省玉米穗腐病主要致病镰孢种群分布及杀菌剂对镰孢菌菌丝生长的抑制效果, 为针对性地开展玉米镰孢穗腐病的防治提供依据。【方法】通过组织分离法和分子生物学方法对2020年采自吉林省36个市(县)的149份玉米穗腐病样品进行病原菌分离鉴定,利用禾谷镰孢复合种(Fusarium graminearum species complex,FGSC)毒素合成相关基因特异性引物检测其产生毒素的化学型,对部分禾谷镰孢复合种进行致病力测定;采用菌丝生长速率法测定7种杀菌剂对禾谷镰孢复合种的抑制效果。【结果】分离获得233株镰孢菌,隶属4个镰孢复合种,含9种镰孢菌,包括拟轮枝镰孢(F. verticillioides)、布氏镰孢(F. boothii)、禾谷镰孢(F. graminearum)、层出镰孢(F. proliferatum)、亚洲镰孢(F. asiaticum)、厚垣镰孢(F. chlamydosporum)、藤仓镰孢(F.fujikuroi)、木贼镰孢(F.equiseti)和亚黏团镰孢(F. subglutinans),分离频率依次为33.05%、26.18%、25.32%、12.45%、0.86%、0.86%、0.43%、0.43%和0.43%,其中禾谷镰孢复合种分离频率最高,为52.36%,是吉林省玉米穗腐病的优势致病镰孢菌。布氏镰孢、禾谷镰孢和亚洲镰孢在禾谷镰孢复合种中的占比分别为50.00%、48.36%和1.46%。系统发育树结果表明禾谷镰孢复合种种间、种内遗传多样性均较为丰富。致病力测定结果表明52.73%的禾谷镰孢复合种为中致病型菌株,东部玉米主产区分离的禾谷镰孢致病力最强。毒素化学型检测表明,亚洲镰孢为雪腐镰刀烯醇(NIV)化学型,禾谷镰孢与布氏镰孢为15-乙酰基-脱氧雪腐镰刀烯醇(15-AcDON)化学型。7种杀菌剂抑制禾谷镰孢复合种菌丝生长的EC50介于0.02—19.45 μg·mL-1,其中咯菌腈(FS)、抑霉唑(FS)、氟硅唑(EC)、戊唑醇(TC)和腈菌唑(EW)对禾谷镰孢复合种抑制效果较好且差异不大,EC50小于1.20 μg·mL-1,EC90小于100 μg·mL-1;30%吡唑醚菌酯抑制禾谷镰孢和布氏镰孢生长的EC50差异明显,抑制禾谷镰孢的EC50是布氏镰孢的10.24倍。【结论】吉林省不同玉米产区的玉米穗腐病的优势致病镰孢不同,东部和西部为禾谷镰孢和布氏镰孢,中部为拟轮枝镰孢。禾谷镰孢复合种种间、种内遗传多样性均较丰富。咯菌腈、抑霉唑、氟硅唑、戊唑醇和腈菌唑对禾谷镰孢复合种的抑菌效果较好且在禾谷镰孢复合种间的药剂敏感性差别不明显。
柴海燕,贾娇,白雪,孟玲敏,张伟,金嵘,吴宏斌,苏前富. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性[J]. 中国农业科学, 2023, 56(1): 64-78.
CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province[J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
表1
镰孢菌的特异性鉴定引物"
真菌 Fungi | 引物 Primer | 引物序列 Primer sequence (5′-3′) | 扩增片段 Target fragment (bp) | 退火温度 Tm (℃) |
---|---|---|---|---|
镰孢菌属 Fusarium spp. | ItsF | AACTCCCAAACCCCTGTGAACATA | 431 | 58 |
ItsR | TTTAACGGCGTGGCCGC | |||
禾谷镰孢复合种 F. graminearum species complex | Fg16NF | ACAGATGACAAGATTCAGGCACA | 280 | 57 |
Fg16NR | TTCTTTGACATCTGTTCAACCCA | |||
拟轮枝镰孢 F. verticillioides | VER1 | CTTCCTGCGATGTTTCTCC | 578 | 56 |
VER2 | AATTGGCCATTGGTATTATATATCTA | |||
层出镰孢 F. proliferatum | PRO1 | CTTTCCGCCAAGTTTCTTC | 585 | 56 |
PRO2 | TGTCAGTAACTCGACGTTGTTG | |||
亚黏团镰孢 F. subglutinans | SUB1 | CTGTCGCTAACCTCTTTATCCA | 340 | 58 |
SUB2 | CAGTATGGACGTTGGTATTATATCTAA |
表2
吉林省不同玉米主产区镰孢菌的分离频率"
镰孢菌 Fusarium spp. | 总分离频率 Total isolation frequency (%) | 分离频率<BOLD>I</BOLD>solation frequency (%) | ||
---|---|---|---|---|
东部East | 中部Central | 西部West | ||
禾谷镰孢 F. graminearum | 25.32 | 33.85 | 19.86 | 36.36 |
亚洲镰孢 F. asiaticum | 0.86 | 0 | 1.37 | 0 |
布氏镰孢 F. boothii | 26.18 | 30.77 | 13.01 | 54.55 |
拟轮枝镰孢 F. verticillioides | 33.05 | 27.69 | 40.41 | 0 |
层出镰孢 F. proliferatum | 12.45 | 6.15 | 17.12 | 0 |
厚垣镰孢 F. chlamydosporum | 0.86 | 1.54 | 0.68 | 4.55 |
藤仓镰孢 F. fujikuroi | 0.43 | 0 | 0 | 0 |
木贼镰孢F. equiseti | 0.43 | 0 | 0.68 | 0 |
亚黏团镰孢 F. subglutinans | 0.43 | 0 | 0 | 4.55 |
表3
禾谷镰孢复合种引起的穗腐病平均病情级别"
区域 Area | 禾谷镰孢 F. graminearum | 亚洲镰孢 F. asiaticum | 布氏镰孢 F. boothii | |||
---|---|---|---|---|---|---|
菌株数 Number of strains | 平均病情级别 Average disease grade | 菌株数 Number of strains | 平均病情级别 Average disease grade | 菌株数 Number of strains | 平均病情级别 Average disease grade | |
东部East | 3 | 5.23 | - | - | 2 | 3.42 |
中部Middle | 18 | 4.47 | 2 | 3.47 | 18 | 4.48 |
西部West | 3 | 3.73 | - | - | 9 | 3.29 |
合计Total | 24 | 4.55 | 2 | 3.47 | 29 | 4.13 |
表4
禾谷镰孢复合种致病力与毒素化学型分析"
菌株 Strain | 禾谷镰孢复合种 FGSC | 来源 Source | 平均病情级别 Average disease grade | 致病类型 Pathogenic type | 毒素化学型 Toxigenic chemotype |
---|---|---|---|---|---|
DASJ-1 | F. b | 大安Daan | 1.48 | LV | 15-AcDON |
DASJ-2 | F. b | 大安Daan | 3.51 | MV | 15-AcDON |
DASJ-4 | F. b | 大安Daan | 4.00 | MV | 15-AcDON |
DASJ-5 | F. b | 大安Daan | 3.29 | SL | 15-AcDON |
DATSZ-1 | F. b | 大安Daan | 3.68 | MV | 15-AcDON |
DATSZ-2 | F. b | 大安Daan | 4.26 | MV | 15-AcDON |
DHXST-1 | F. a | 德惠Dehui | 4.43 | MV | NIV |
DHXST-2 | F. g | 德惠Dehui | 4.28 | MV | 15-AcDON |
DHXST-3 | F. g | 德惠Dehui | 5.29 | SH | 15-AcDON |
DHXST-4 | F. g | 德惠Dehui | 3.86 | MV | 15-AcDON |
DHXCZ-2 | F. g | 德惠Dehui | 6.06 | MV | 15-AcDON |
DHXCZ-3 | F. b | 德惠Dehui | 2.95 | SL | 15-AcDON |
DF-1 | F. g | 东丰Dongfeng | 3.69 | MV | 15-AcDON |
DFHH-3 | F. b | 东丰Dongfeng | 3.97 | MV | 15-AcDON |
DL-1 | F. g | 东辽Dongliao | 2.95 | SL | 15-AcDON |
DL-2 | F. g | 东辽Dongliao | 5.55 | SH | 15-AcDON |
FYYP-1 | F. b | 扶余Fuyu | 4.48 | MV | 15-AcDON |
SJZ-1 | F. b | 扶余Fuyu | 6.77 | SH | 15-AcDON |
SJZ-2 | F. b | 扶余Fuyu | 3.60 | MV | 15-AcDON |
SJZ-3 | F. b | 扶余Fuyu | 5.59 | SH | 15-AcDON |
SJZ-4 | F. g | 扶余Fuyu | 4.22 | MV | 15-AcDON |
SJZ-5 | F. b | 扶余Fuyu | 3.05 | SL | 15-AcDON |
SJZ-6 | F. b | 扶余Fuyu | 3.34 | SL | 15-AcDON |
HLZ-11 | F. g | 公主岭Gongzhuling | 5.12 | MV | 15-AcDON |
HLZ-12 | F. a | 公主岭Gongzhuling | 2.52 | SL | NIV |
HLZ-25 | F. g | 公主岭Gongzhuling | 4.28 | MV | 15-AcDON |
HLZ-26 | F. g | 公主岭Gongzhuling | 6.42 | SH | 15-AcDON |
HLZ-35 | F. b | 公主岭Gongzhuling | 5.42 | MV | 15-AcDON |
JHXZWHC-2 | F. g | 蛟河Jiaohe | 5.00 | MV | 15-AcDON |
JHXZWHC-3 | F. g | 蛟河Jiaohe | 5.98 | SH | 15-AcDON |
JYXJ-1 | F. g | 靖宇Jingyu | 4.62 | MV | 15-AcDON |
LY-1 | F. g | 辽源市区Liaoyuan | 4.39 | MV | 15-AcDON |
LYDT-2 | F. b | 辽源市区Liaoyuan | 5.63 | SH | 15-AcDON |
NAXQKJ-1 | F. g | 农安Nongan | 6.57 | SH | 15-AcDON |
NAXQKJ-2 | F. g | 农安Nongan | 8.58 | HV | 15-AcDON |
QG-1 | F. b | 前郭Qianguo | 5.04 | SH | 15-AcDON |
QG-2 | F. b | 前郭Qianguo | 5.72 | SH | 15-AcDON |
QG-4 | F. g | 前郭Qianguo | 4.05 | MV | 15-AcDON |
QG-5 | F. b | 前郭Qianguo | 6.35 | SH | 15-AcDON |
1SL-1 | F. g | 舒兰Shulan | 3.27 | SL | 15-AcDON |
SLSYZ-1 | F. g | 舒兰Shulan | 1.70 | SL | 15-AcDON |
SL-1 | F. b | 双辽Shuangliao | 2.79 | SL | 15-AcDON |
SYSNJQ-1 | F. b | 松原市区Songyuan | 4.36 | MV | 15-AcDON |
SYSNJQ-2 | F. b | 松原市区Songyuan | 5.15 | MV | 15-AcDON |
SYSNJQ-3 | F. b | 松原市区Songyuan | 3.76 | MV | 15-AcDON |
TNHS-1 | F. g | 洮南Taonan | 3.61 | MV | 15-AcDON |
TNHS-2 | F. g | 洮南Taonan | 3.74 | MV | 15-AcDON |
TYNLB-1 | F. g | 洮南Taonan | 3.85 | MV | 15-AcDON |
WQ-1 | F. b | 汪清Wangqing | 2.76 | SL | 15-AcDON |
WQ-3 | F. b | 汪清Wangqing | 4.09 | MV | 15-AcDON |
YJ-1 | F. g | 永吉Yongji | 2.00 | MV | 15-AcDON |
TJT-2 | F. b | 榆树Yushu | 3.33 | SL | 15-AcDON |
CL-2 | F. b | 长岭Changling | 3.10 | SL | 15-AcDON |
CL-3 | F. b | 长岭Changling | 3.69 | MV | 15-AcDON |
CL-8 | F. b | 长岭Changling | 1.67 | SL | 15-AcDON |
表5
7种杀菌剂对禾谷镰孢复合种的室内毒力测定"
药剂 Fungicide | 禾谷镰孢复合种 FGSC | 毒力回归方程 Toxic regression equation (y=) | 相关系数 Correlation coefficient (r) | P值 P value | EC50 (μg·mL-1) | EC90 (μg·mL-1) |
---|---|---|---|---|---|---|
1%咯菌腈 1% Fludioxonil (FS) | F. g | 6.7459+1.1782x | 0.9867 | 0.0003 | 0.03 | 0.40 |
F. a | 7.0660+1.3816x | 0.9864 | 0.0003 | 0.03 | 0.27 | |
F. b | 6.5108+0.8802x | 0.9956 | 0 | 0.02 | 0.55 | |
97%戊唑醇 97% Tebuconazole (TC) | F. g | 5.1913+0.6573x | 0.9810 | 0.0001 | 0.51 | 45.57 |
F. a | 5.2057+0.6911x | 0.9901 | 0 | 0.50 | 36.05 | |
F. b | 5.1031+0.6849x | 0.9817 | 0.0001 | 0.71 | 52.55 | |
400 g·L-1氟硅唑 400 g·L-1 Flusilazole (EC) | F. g | 5.5130+0.7766x | 0.9944 | 0.0000 | 0.63 | 28.36 |
F. a | 5.0412+0.7940x | 0.9755 | 0.0009 | 0.89 | 36.48 | |
F. b | 5.2173+0.6697x | 0.9963 | 0 | 0.47 | 38.84 | |
10%抑霉唑 10% Imazalil (FS) | F. g | 5.4567+2.4924x | 0.9642 | 0.0019 | 0.66 | 2.14 |
F. a | 5.2131+2.1992x | 0.9397 | 0.0053 | 0.80 | 3.06 | |
F. b | 6.0591+2.1246x | 0.9525 | 0.0033 | 0.32 | 1.27 | |
12.5%腈菌唑 12.5% Myclobutanil (EW) | F. g | 5.0197+0.8285x | 0.9829 | 0.0004 | 0.95 | 33.35 |
F. a | 4.9353+0.9961x | 0.9821 | 0.0005 | 1.16 | 22.46 | |
F. b | 5.1448+0.9618x | 0.9961 | 0 | 0.71 | 15.20 | |
80%福美双 80% Famous Double (WG) | F. g | 4.5324+0.4878x | 0.9697 | 0.0003 | 9.09 | 3855.64 |
F. a | 4.5260+0.5899x | 0.9820 | 0.0001 | 6.36 | 946.20 | |
F. b | 4.4917+0.7141x | 0.9739 | 0.0002 | 5.15 | 320.84 | |
30%吡唑醚菌酯 30% Pyraclostrobin (SC) | F. g | 4.6753+0.2519x | 0.9619 | 0.0021 | 19.45 | 2378665.18 |
F. a | 4.7013+0.2785x | 0.9661 | 0.0017 | 11.81 | 471493.34 | |
F. b | 4.9428+0.2048x | 0.9601 | 0.0024 | 1.90 | 3434875.02 |
[1] | 段灿星, 王晓鸣, 宋凤景, 孙素丽, 周丹妮, 朱振东. 玉米抗穗腐病研究进展. 中国农业科学, 2015, 48(11): 2152-2164. |
DUAN C X, WANG X M, SONG F J, SUN S L, ZHOU D N, ZHU Z D. Advances in research on maize resistance to ear rot. Scientia Agricultura Sinica, 2015, 48(11): 2152-2164. (in Chinese) | |
[2] |
TORRES A M, PALACIOS S A, YERKOVICH N, PALAZZINI J M, BATTILANI P, LESLIE J F, LOGRIECO A F, CHULZE S N. Fusarium head blight and mycotoxins in wheat: Prevention and control strategies across the food chain. World Mycotoxin Journal, 2019, 12(4): 333-355.
doi: 10.3920/WMJ2019.2438 |
[3] |
LEE H J, RYU D. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. Journal of Agricultural and Food Chemistry, 2017, 65(33): 7034-7051.
doi: 10.1021/acs.jafc.6b04847 pmid: 27976878 |
[4] |
SUN X D, SU P, SHAN H. Mycotoxin contamination of rice in China. Journal of Food Science, 2017, 82(3): 573-584.
doi: 10.1111/1750-3841.13631 pmid: 28135406 |
[5] | 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析. 作物学报, 2022, 48(9): 2155-2167. |
DUAN C X, CUI L N, XIA Y S, DONG H Y, YANG Z H, HU Q Y, SUN S L, LI X, ZHU Z D, WANG X M. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot. Acta Agronomica Sinica, 2022, 48(9): 2155-2167. (in Chinese) | |
[6] | SCHAAFSMA A W, LIMAY-RIOS V, TAMBUR-ILLINCI L. Mycotoxins and Fusarium species associated with maize ear rot in Ontario, Canada. Cereal Research Communications, 2008, 36(Suppl. B): 525-527. |
[7] |
PFORDT A, ROMERO L R, SCHIWEK S, KARLOVSK P, VON TIEDENANN A. Impact of environmental conditions and agronomic practices on the prevalence of Fusarium species associated with ear and stalk rot in maize. Pathogens, 2020, 9(3): 236.
doi: 10.3390/pathogens9030236 |
[8] |
STUMPF R, SANTOS J, GOMES L B, SILVA C N, TESSMANN D J, FERRERIA F D, MACHINSKI M, DEL PONTE E M. Fusarium species and fumonisins associated with maize kernels produced in Rio Grande do Sul State for the 2008/09 and 2009/10 growing seasons. Brazilian Journal of Microbiology, 2013, 44(1): 89-95.
doi: 10.1590/S1517-83822013000100012 |
[9] |
SAMPIETRO D A, DIAZ C G, GONZALEZ V, VATTUNE M A, PLOPE L D, CATALAN C A, WARD T J. Species diversity and toxigenic potential of Fusarium graminearum complex isolates from maize fields in northwest Argentina. International Journal of Food Microbiology, 2011, 145(1): 359-364.
doi: 10.1016/j.ijfoodmicro.2010.12.021 |
[10] |
DESJARDINS A E, PROCTOR R H. Genetic diversity and trichothecene chemotypes of the Fusariurn graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Fungal Biology, 2011, 115(1): 38-48.
doi: 10.1016/j.funbio.2010.10.002 |
[11] |
STEPIEN Ł, GROMADZK K, CHELKOWSKI J,. BASINSKA- BARCZAK A, LALAK-KANCZUGOWSKA J. Diversity and mycotoxin production by Fusarium temperatum and Fusarium subglutinans as causal agents of pre-harvest Fusarium maize ear rot in Poland. Journal of Applied Genetics, 2019, 60: 113-121.
doi: 10.1007/s13353-018-0478-x |
[12] |
COVARELLI L, STIFANO S, BECCAR G, RAGGI L, LATTANZIO V M T, ALBERTINI E. Characterization of Fusarium verticillioides strains isolated from maize in Italy: Fumonisin production, pathogenicity and genetic variability. Food Microbiology, 2012, 31(1): 17-24.
doi: 10.1016/j.fm.2012.02.002 |
[13] |
SMALL I M, FLETT B C, MARASAS W F O, MCLEOD A, STADER M A, VILJOEN A. Resistance in maize inbred lines to Fusarium verticillioides and fumonisin accumulation in South Africa. Plant Disease, 2012, 96(6): 881-888.
doi: 10.1094/PDIS-08-11-0695 |
[14] |
ALIAKBARI F, MIRABILFATHY M, EMAMI M, MAZHAR S F, KARAMI-OSBOO R. Natural occurrence of Fusarium species in maize kernels at Gholestan Province in Northern Iran. Asian Journal of Plant Sciences, 2007, 6(8): 1276-1281.
doi: 10.3923/ajps.2007.1276.1281 |
[15] |
DESJARDINS A E, MUNKVOLD G P, PLANTTNER R D, PROCTOR R H. FUM1—a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Molecular Plant-Microbe Interactions, 2002, 15(11): 1157-1164.
doi: 10.1094/MPMI.2002.15.11.1157 |
[16] |
SCHAAFSMA A W, NICOL R W, REID L M. Evaluating commercial maize hybrids for resistance to Gibberella ear rot. European Journal of Plant Pathology, 1997, 103: 737-746.
doi: 10.1023/A:1008629629069 |
[17] | 郭成, 魏宏玉, 郭满库, 何苏琴, 金社林, 陈红梅, 王晓鸣, 郭建国. 甘肃玉米穗腐病样品中轮枝镰孢菌的分离鉴定及生物学特性. 植物病理学报, 2014, 44(1): 17-25. |
GUO C, WEI H Y, GUO M K, HE S Q, JIN S L, CHEN H M, WANG X M, GUO J G. Isolation, identification and biological characteristics of Fusarium verticillioides from maize ear rot samples in Gansu Province. Acta Phytopathologica Sinica, 2014, 44(1): 17-25. (in Chinese) | |
[18] | 杜青, 唐照磊, 李石初, 上官玲玲, 李华娇, 段灿星. 广西玉米穗腐病致病镰孢种群构成与毒素化学型分析. 中国农业科学, 2019, 52(11): 1895-1907. |
DU Q, TANG Z L, LI S C, SHANGGUAN L L, LI H J, DUAN C X. Composition of Fusarium species causing maize ear rot and analysis of toxigenic chemotype in Guangxi. Scientia Agricultura Sinica, 2019, 52(11): 1895-1907. (in Chinese) | |
[19] | 王宝宝, 毕四刚, 肖明纲, 张冬英, 闫强, 张彦彦, 杨树龙, 朱振东, 段灿星. 黑龙江省玉米穗腐病致病镰孢菌分离鉴定及产毒基因型分析. 草业学报, 2020, 29(1): 163-174. |
WANG B B, BI S G, XIAO M G, ZHANG D Y, YAN Q, ZHANG Y Y, YANG S L, ZHU Z D, DUAN C X. Isolation and identification of pathogenic Fusarium spp. causing maize ear rot and analysis of their toxin-producing genotype in Heilongjiang Province. Acta Prataculturae Sinica, 2020, 29(1): 163-174. (in Chinese) | |
[20] | 魏琪, 廖露露, 陈莉, 齐永霞. 安徽省玉米穗腐病主要致病镰孢菌的分离与鉴定. 植物保护, 2019, 45(5): 221-225. |
WEI Q, LIAO L L, CHEN L, QI Y X. Isolation and identification of main Fusarium species causing maize ear rot in Anhui Province. Plant Protection, 2019, 45(5): 221-225. (in Chinese) | |
[21] |
丁梦军, 杨扬, 孙华, 马红霞, 刘树森, 石洁. 山东省玉米穗腐病病原菌的分离鉴定及优势种的系统发育分析. 华北农学报, 2019, 34(5): 216-223.
doi: 10.7668/hbnxb.201751508 |
DING M J, YANG Y, SUN H, MA H X, LIU S S, SHI J. Isolation and identification of maize ear rot pathogens and phylogenetic analysis of dominant species in Shandong Province. Acta Agriculturae Boreali- Sinica, 2019, 34(5): 216-223. (in Chinese)
doi: 10.7668/hbnxb.201751508 |
|
[22] |
ZHOU D N, WANG X M, CHEN G K, SUN S L, YANG Y, ZHU Z D, DUNG C X. The major Fusarium species causing maize ear and kernel rot and their toxigenicity in Chongqing, China. Toxins, 2018, 10(2): 90.
doi: 10.3390/toxins10020090 |
[23] | 孙华, 郭宁, 石洁, 张海剑, 马红霞, 刘树森. 海南玉米穗腐病病原菌分离鉴定及优势种的遗传多样性分析. 植物病理学报, 2017, 47(5): 577-583. |
SUN H, GUO N, SHI J, ZHANG H J, MA H X, LIU S S. Characterization of the maize ear rot pathogens and genetic diversity analysis of dominant species in Hainan. Acta Phytopathologica Sinica, 2017, 47(5): 577-583. (in Chinese) | |
[24] | 陈晓娟, 文成敬. 四川省玉米穗腐病研究初报. 西南农业大学学报, 2002, 24(1): 21-23, 25. |
CHEN X J, WEN C J. Preliminary study of maize ear rot in Sichuan. Journal of Southwest Agricultural University, 2002, 24(1): 21-23, 25. (in Chinese) | |
[25] | 孙华, 丁梦军, 张家齐, 石洁, 郭宁, 李坡. 河北省玉米穗腐病病原菌鉴定及潜在产伏马毒素镰孢菌系统发育分析. 植物病理学报, 2019, 49(2): 151-159. |
SUN H, DING M J, ZHANG J Q, SHI J, GUO N, LI P. Identification of pathogens causing maize ear rot and the phylogenetic analysis of fumonisins-producing Fusarium species in Hebei Province. Acta Phytopathologica Sinica, 2019, 49(2): 151-159. (in Chinese) | |
[26] | 李新凤, 王建明, 张作刚, 高俊明, 郝晓娟, 贺运春. 山西省玉米穗腐病病原镰孢菌的分离与鉴定. 山西农业大学学报(自然科学版), 2012, 32(3): 218-223. |
LI X F, WANG J M, ZHANG Z G, GAO J M, HAO X J, HE Y C. Isolation and identification of the pathogen Fusarium causing maize ear rot in Shanxi Province. Journal of Shanxi Agricultural University (Natural Science Edition), 2012, 32(3): 218-223. (in Chinese) | |
[27] | 马秉元, 龙书生, 李多川, 李亚玲. 陕西省玉米穗粒腐病的病原菌鉴定及各分离菌分布频率. 西北农林科技大学学报(自然科学版), 1995, 23(增刊): 98-103. |
MA B Y, LONG S S, LI D C, LI Y L. Identification of pathogenic bacteria of maize ear rot and distribution frequency of each isolate in Shaanxi Province. Journal of Northwest A&F University (Natural Science Edition), 1995, 23(Suppl.): 98-103. (in Chinese) | |
[28] | 肖淑芹, 许佳宁, 闫丽斌, 隋韵涵, 薛春生, 陈捷. 辽宁省玉米镰孢穗腐病病原菌的鉴定与分布. 植物保护学报, 2017, 44(5): 803-808. |
XIAO S Q, XU J N, YAN L B, SUI Y H, XUE C S, CHEN J. Identification and distribution of Fusarium species causing maize ear rot in Liaoning Province. Journal of Plant Protection, 2017, 44(5): 803-808. (in Chinese) | |
[29] | 吴畏, 田宇昂, 白宇汐, 梁琳悦, 余洋, 梁鹏宽, 蒋中华, 石海春, 柯永培, 孙群. 云南玉米穗腐病致病菌鉴定与共生群落分析. 中国测试, 2022, 48(2): 56-65. |
WU W, TIAN Y A, BAI Y X, LIANG L Y, YU Y, LIANG P K, JIANG Z H, SHI H C, KE Y P, SUN Q. Pathogen identification and symbiotic community analysis of maize ear rot in Yunnan Province. China Measurement and Test, 2022, 48(2): 56-65. (in Chinese) | |
[30] |
CHIOTTA M L, ALANIZ ZANON M S, PALAZZINI J M, SCANDIANI M M, FORMENTO A N, BARROS G G, CHULZE S N. Pathogenicity of Fusarium graminearum and F. meridionale on soybean pod blight and trichothecene accumulation. Plant Pathology, 2016, 65(9): 1492-1497.
doi: 10.1111/ppa.12532 |
[31] |
HAO J J, XIE S N, SUN J, YANG G Q, LIU J Z, XU F, RU Y Y, SONG Y L. Analysis of Fusarium graminearum species complex from wheat-maize rotation regions in Henan (China). Plant Disease, 2017, 101(5): 720-725.
doi: 10.1094/PDIS-06-16-0912-RE |
[32] | 秦子惠, 任旭, 江凯, 武小菲, 杨知还, 王晓鸣. 我国玉米穗腐病致病镰孢种群及禾谷镰孢复合种的鉴定. 植物保护学报, 2014, 41(5): 589-596. |
QIN Z H, REN X, JIANG K, WU X F, YANG Z H, WANG X M. Identification of Fusarium species and F. graminearum species complex causing maize ear rot in China. Journal of Plant Protection, 2014, 41(5): 589-596. (in Chinese) | |
[33] | 孙华, 张海剑, 马红霞, 石洁, 郭宁, 陈丹, 李坡. 春玉米区穗腐病病原菌组成、分布及禾谷镰孢复合种的鉴定. 植物病理学报, 2018, 48(1): 8-15. |
SUN H, ZHANG H J, MA H X, SHI J, GUO N, CHEN D, LI P. Composition and distribution of pathogens causing ear rot in spring maize region and identification of Fusarium graminearum species complex. Acta Phytopathologica Sinica, 2018, 48(1): 8-15. (in Chinese) | |
[34] | 卢宝慧, 吴庠玉, 刘燕妮, 南楠, 夏纬跃, 马贵龙, 高洁. 玉米穗腐病药剂防治研究. 吉林农业大学学报, 2014, 36(5): 519-523. |
LU B H, WU X Y, LIU Y N, NAN N, XIA W Y, MA G L, GAO J. Study on chemical control of maize ear rot caused by Fusarium graminearum. Journal of Jilin Agricultural University, 2014, 36(5): 519-523. (in Chinese) | |
[35] | 郭聪聪, 付萌, 庞民好, 刘颖超, 董金皋. 杀菌剂对玉米穗腐病菌的毒力及毒素产生的影响. 植物保护学报, 2015, 42(6): 1036-1043. |
GUO C C, FU M, PANG M H, LIU Y C, DONG J G. Effects of fungicides on growth and mycotoxins of Fusarium species causing maize ear rot. Journal of Plant Protection, 2015, 42(6): 1036-1043. (in Chinese) | |
[36] | 晏明, 张磊, 盛国志. 吉林省农业功能区划研究. 中国农业资源与区划, 2011, 32(5): 36-41. |
YAN M, ZHANG L, SHENG G Z. Studies on regional planning of agriculture function of Jilin Province. Chinese Journal of Agricultural Resources and Regional Planning, 2011, 32(5): 36-41. (in Chinese) | |
[37] | 张昊, 张争, 许景升, 徐进, 张丽勍, 潘哲超, 田茜, 冯洁. 一种简单快速的赤霉病菌单孢分离方法——平板稀释画线分离法. 植物保护, 2008, 34(6): 134-136. |
ZHANG H, ZHANG Z, XU J S, XU J, ZHANG L Q, PAN Z C, TIAN Q, FENG J. A rapid and simple method for obtaining single-spore isolates of Fusarium species—agar dilution lineation separation. Plant Protection, 2008, 34(6): 134-136. (in Chinese) | |
[38] | LESELIE J F, SUMMERELL B A. The Fusarium Laboratory Manual. Iowa: Blackwell Publishing, 2006. |
[39] | 陈鸿逵, 王拱辰. 浙江镰刀菌志. 杭州: 浙江科学技术出版社, 1992. |
CHEN H K, WANG G C. Zhejiang Fusarium spp. Hangzhou: Zhejiang Science and Technology Press, 1992. (in Chinese) | |
[40] | 杨谦. 植物病原菌抗药性分子生物学. 2版. 北京: 科学出版社, 2011. |
YANG Q. Molecular Biology of Drug Resistance of Plant Pathogens. 2nd ed. Harbin: Science Press, 2011. (in Chinese) | |
[41] | 张婷, 孙晓东, 吕国忠. 我国东北地区玉米穗腐镰孢菌的种类及其分离频率. 菌物研究, 2011, 9(1): 9-14, 36. |
ZHANG T, SUN X D, LÜ G Z. Fusarium species and its isolation frequency from rot ears of maize in Northeast China. Journal of Fungal Research, 2011, 9(1): 9-14, 36. (in Chinese) | |
[42] | 许佳宁. 辽吉地区玉米穗腐病病原鉴定及防治基础研究[D]. 沈阳: 沈阳农业大学, 2018. |
XU J N. Identification of pathogen of maize ear rot in Liaoning and Jilin provinces and control[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese) | |
[43] | SHANG G F, LI S Q, YU H, YANG J, LI S M, YU Y Q, WANG J M, WANG Y, ZENG Z, ZHANG J B, HU Z Q. An efficient strategy combining immunoassays and molecular identification for the investigation of Fusarium infections in ear rot of maize in Guizhou Province, China. Frontier in Microbiology, 2022, 13: 849698. |
[44] |
WANG J H, ZHANG J B, LI H P, GONG A D, XUE S, AGBOOLA R S, LIAO Y C. Molecular identification, mycotoxin production and comparative pathogenicity of Fusarium temperatum isolated from maize in China. Journal of Phytopathology, 2014, 162: 147-157.
doi: 10.1111/jph.12164 |
[45] |
DUAN C X, QIN Z H, YANG Z H, LI W X, SUN S L, ZHU Z D, WANG X M. Identification of pathogenic Fusarium spp. causing maize ear rot and potential mycotoxin production in China. Toxins, 2016, 8(6): 186.
doi: 10.3390/toxins8060186 |
[46] | 马红霞, 孙华, 郭宁, 张海剑, 石洁, 常佳迎. 禾谷镰孢复合种毒素化学型及遗传多样性分析. 中国农业科学, 2018, 51(1): 82-95. |
MA H X, SUN H, GUO N, ZHANG H J, SHI J, CHANG J Y. Analysis of toxigenic chemotype and genetic diversity of the Fusarium graminearum species complex. Scientia Agricultura Sinica, 2018, 51(1): 82-95. (in Chinese) | |
[47] | 王宝宝, 郭成, 孙素丽, 夏玉生, 朱振东, 段灿星. 玉米穗腐病致病禾谷镰孢复合种的遗传多样性、致病力与毒素化学型分析. 中国农业科学, 2020, 53(23): 4777-4790. |
WANG B B, GUO C, SUN S L, XIA Y S, ZHU Z D, DUAN C X. The genetic diversity, pathogenicity, and toxigenic chemotypes of Fusarium graminearum species complex causing maize ear rot. Scientia Agricultura Sinica, 2020, 53(23): 4777-4790. (in Chinese) | |
[48] | 李晓鸯. 东北地区玉米穗腐病致病镰孢菌种群结构及品种抗性分析[D]. 沈阳: 沈阳农业大学, 2018. |
LI X Y. Population structure of Fusarium spp. and the resistance of maize to maize ear rot in Northeast China[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese) | |
[49] |
SAMPIETRO D A, MARIN P, IGLESIAS J, PRESELLO D A, VATTUONE M A, CATALAN C A, GONZALEZ JAEN M T. A molecular based strategy for rapid diagnosis of toxigenic Fusarium species associated to cereal grains from Argentina. Fungal Biology, 2010, 114(1): 74-81.
doi: 10.1016/j.mycres.2009.10.008 |
[50] | 汪锟. 杀菌剂对安徽凤阳玉米穗腐病菌的毒力及相关调控基因表达的研究[D]. 合肥: 合肥工业大学, 2019. |
WANG K. Study on the virulence of fungicides against maize ear rot fungus in Fengyang, Anhui and the expression of related genes[D]. Hefei: Hefei University of Technology, 2019. (in Chinese) |
[1] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[2] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[3] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[4] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[5] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[6] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[7] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. |
[8] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[9] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[10] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[11] | 乔远,杨欢,雒金麟,汪思娴,梁蓝月,陈新平,张务帅. 西北地区玉米生产投入及生态环境风险评价[J]. 中国农业科学, 2022, 55(5): 962-976. |
[12] | 黄兆福, 李璐璐, 侯梁宇, 高尚, 明博, 谢瑞芝, 侯鹏, 王克如, 薛军, 李少昆. 不同种植区玉米生理成熟后田间站秆脱水的积温需求[J]. 中国农业科学, 2022, 55(4): 680-691. |
[13] | 石习, 宁丽华, 葛敏, 邬奇, 赵涵. 玉米氮状况相关生物标记物的筛选和应用[J]. 中国农业科学, 2022, 55(3): 438-450. |
[14] | 张建军, 党翼, 赵刚, 王磊, 樊廷录, 李尚中. 覆膜时期和施氮量对陇东旱塬玉米产量和水氮利用效率的影响[J]. 中国农业科学, 2022, 55(3): 479-490. |
[15] | 房孟颖,卢霖,王庆燕,董学瑞,闫鹏,董志强. 乙矮合剂对不同施氮量夏玉米根系形态构建和产量的影响[J]. 中国农业科学, 2022, 55(24): 4808-4822. |
|