中国农业科学 ›› 2022, Vol. 55 ›› Issue (19): 3685-3696.doi: 10.3864/j.issn.0578-1752.2022.19.001
庞浩婉1(),傅乾坤1,杨青青1,张元元2,付凤玲1,于好强1()
收稿日期:
2022-04-18
接受日期:
2022-06-16
出版日期:
2022-10-01
发布日期:
2022-10-10
通讯作者:
于好强
作者简介:
庞浩婉,E-mail: 基金资助:
PANG HaoWan1(),FU QianKun1,YANG QingQing1,ZHANG YuanYuan2,FU FengLing1,YU HaoQiang1()
Received:
2022-04-18
Accepted:
2022-06-16
Online:
2022-10-01
Published:
2022-10-10
Contact:
HaoQiang YU
摘要:
【目的】玉米作为重要的粮、经、饲多用作物,其产量的稳定对经济发展和粮食安全意义重大。AP2/EREBP(APETALA2/ ethylene response element binding protein,AP2/EREBP)转录因子在植物生长发育及逆境应答中发挥重要作用。前期研究发现,玉米ZmBES1/BZR1-5转录因子靶基因ZmEREB93可能参与调控种子大小。克隆ZmEREB93,并对其表达特性及功能进行分析,为深入解析其调控玉米籽粒发育的功能与机制奠定基础。【方法】从玉米自交系B73中克隆ZmEREB93的全长序列,对其基因序列和编码氨基酸序列特征进行生物信息学分析。随后,通过实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)分析其组织表达模式,分别构建植物和酵母表达载体,进行亚细胞定位和转录激活活性分析。经农杆菌介导法将ZmEREB93转入拟南芥,对转基因株系的种子表型进行分析。最后,通过体外染色质免疫共沉淀测序(chromatin immunoprecipitation sequencing,Chip-seq)和共表达分析筛选ZmEREB93可能调控的候选靶基因,并通过酵母单杂交(yeast one hybrid,Y1H)验证。【结果】成功克隆获得ZmEREB93,序列分析结果表明,ZmEREB93无内含子,开放阅读框长618 bp,编码205个氨基酸,有一个高度保守的AP2结构域,属于AP2家族的ERF亚类。qRT-PCR结果表明,ZmEREB93在授粉后15和25 d的种子中表达量较高,其中,在25 d种子中表达量最高,约为15 d种子中表达量的11倍,在茎和根中有微量表达,在雄穗、花丝及苞叶中无表达。转录激活试验结果表明,ZmEREB93蛋白在酵母细胞中不具有转录激活活性。亚细胞定位结果显示,ZmEREB93蛋白定位于细胞核。与野生型株系相比,转基因拟南芥株系种子的长和宽显著变小且千粒重显著降低。体外Chip-seq与共表达分析结果表明,Zm00001d013611、Zm00001d006016、Zm00001d027448及Zm00001d039991为ZmEREB93转录因子的候选靶基因。Y1H试验表明,ZmEREB93蛋白可直接结合Zm00001d013611启动子。【结论】玉米ZmEREB93作为转录因子在种子中特异性表达,负调控种子大小。
庞浩婉,傅乾坤,杨青青,张元元,付凤玲,于好强. 玉米转录因子ZmEREB93负调控籽粒发育[J]. 中国农业科学, 2022, 55(19): 3685-3696.
PANG HaoWan,FU QianKun,YANG QingQing,ZHANG YuanYuan,FU FengLing,YU HaoQiang. Maize Transcription Factor ZmEREB93 Negatively Regulates Kernel Development[J]. Scientia Agricultura Sinica, 2022, 55(19): 3685-3696.
表1
ZmEREB93候选靶基因"
基因ID Gene ID | 染色体 Chromosome | 富集倍数 Enrichment fold | 相关系数 Correlation coefficient | DRE/CRT元件数 DRE/CRT element No. | 基因注释 GO annotation | 拟南芥中同源基因 Homologous gene in Arabidopsis |
---|---|---|---|---|---|---|
Zm00001d013611 | 5 | 2.69831 | 0.7976 | 3 | 低质量蛋白质:atherin Low quality protein: atherin | ERT2(AT4G20880)[ |
Zm00001d006016 | 2 | 3.10428 | 0.7756 | 3 | 锌指A20和AN1结构域的应激相关蛋白 Zinc finger A20 and AN1 domain-containing stress-associated protein | SAP5(AT3G12630)[ |
Zm00001d027448 | 1 | 3.88035 | 0.7052 | 1 | DUF21结构域蛋白 DUF21 domain-containing protein | AT1G47330 |
Zm00001d039991 | 3 | 2.71538 | 0.7853 | 1 | 未鉴定的 LOC100278084 Uncharacterized LOC100278084 | AT1G13360 |
[1] |
DOLL N M, DEPEGE-FARGEIX N, ROGOWSKY P M, WIDIEZ T. Signaling in early maize kernel development. Molecular Plant, 2017, 10(3): 375-388.
doi: S1674-2052(17)30009-6 pmid: 28267956 |
[2] | 高春艳, 吴芮, 袁玉, 刘同玥, 任莉萍. 植物AP2/ERF转录因子及其在非生物胁迫应答中的作用. 江汉大学学报(自然科学版), 2017, 45(3): 236-240. |
GAO C Y, WU R, YUAN Y, LIU T Y, REN L P.Function of AP2/ERF transcription factors in plant tolerance to abiotic stress. Journal of Jianghan University (Natural Science Education), 2017, 45(3): 236-240. (in Chinese) | |
[3] | JOFUKU K D, DEN BOER B G, VAN MONTAGU M, OKAMURO J K. Control of flower and seed development by the homeotic gene APETALA2. The Plant Cell, 1994, 6(9): 1211-1225. |
[4] |
CHAKRAVARTHY S, TUORI R P, D’ASCENZO M D, FOBERT P R, DESPRES C, MARTIN G B. The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. The Plant Cell, 2003, 15(12): 3033-3050.
doi: 10.1105/tpc.017574 |
[5] |
LICAUSI F, OHME-TAKAGI M, PERATA P. APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs. New Phytologist, 2013, 199(3): 639-649.
pmid: 24010138 |
[6] | WEN K. The important role of AP2 functional genes in plant floral development. Biotechnology Bulletin, 2010, 20(2): 1-7. |
[7] | 丰锦, 陈信波. 抗逆相关AP2/EREBP转录因子研究进展. 生物技术通报, 2011(7): 1-7. |
FENG J, CHEN X B. Research progress of AP2/EREBP transcription factors in stress tolerance. Biotechnology Bulletin, 2011(7): 1-7. (in Chinese) | |
[8] |
RIECHMANN J L, MEYEROWITZ E M. The AP2/EREBP family of plant transcription factors. Biological Chemistry, 1998, 379(6): 633-646.
pmid: 9687012 |
[9] | RAO G, SUI J, ZENG Y, HE C, ZHANG J. Genome-wide analysis of the AP2/ERF gene family in Salix Arbutifolia. FEBS Open Bio, 2015, 24(5): 132-137. |
[10] |
SHIGYO M, HASEBE M, ITO M. Molecular evolution of the AP2 subfamily. Gene, 2006, 366(2): 256-265.
pmid: 16388920 |
[11] |
SHOESMITH J R, SOLOMON C U, YANG X, WILKINSON L G, SHELDRICK S, EIJDEN E V, COUWENBERG S, PUGH M L, ESKAN M, STEPHENS J, BARAKATE A, DREA S, HOUSTON K, TUCKER M R, MCKIM S M. APETALA2 functions as a temporal factor together with BLADE-ON-PETIOLE2 and MADS29 to control flower and grain development in barley. Development, 2021, 148(5): 1-5.
doi: 10.1242/dev.200265 |
[12] |
JIANG W, ZHANG X, SONG X, YANG J, PANG Y. Genome-wide identification and characterization of APETALA2/ethylene-responsive element binding factor superfamily genes in soybean seed development. Frontiers in Plant Science, 2020, 11: 566647.
doi: 10.3389/fpls.2020.566647 |
[13] |
LEI M, LI Z Y, WANG J B, FU Y L, XU L. Ectopic expression of the Aechmea fasciata APETALA2 gene AfAP2-2 reduces seed size and delays flowering in Arabidopsis. Plant Physiology and Biochemistry, 2019, 139: 642-650.
doi: 10.1016/j.plaphy.2019.03.034 |
[14] | JOFUKU K D, OMIDYAR P K, GEE Z, OKAMURO J K. Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proceedings of the National Academy of Sciences of the USA, 2005, 102(8): 3117-3122. |
[15] |
JIANG L, MA X, ZHAO S, TANG Y, LIU F, GU P, FU Y, ZHU Z, CAI H, SUN C, TAN L. The APETALA2-Like transcription factor SUPERNUMERARY BRACT controls rice seed shattering and seed size. The Plant Cell, 2019, 31(1): 17-36.
doi: 10.1105/tpc.18.00304 pmid: 30626621 |
[16] |
LUO C, WANG S, NING K, CHEN Z, WANG Y, YANG J, QI M, WANG Q. The APETALA2 transcription factor LsAP2 regulates seed shape in lettuce. Journal of Experimental Botany, 2021, 72(7): 2463-2476.
doi: 10.1093/jxb/eraa592 pmid: 33340036 |
[17] |
CHEN Y, FENG P, TANG B, HU Z, XIE Q, ZHOU S, CHEN G. The AP2/ERF transcription factor SlERF.F 5 functions in leaf senescence in tomato. Plant Cell Reports, 2022, 41: 1181-1195.
doi: 10.1007/s00299-022-02846-1 |
[18] |
RITONGA F N, NGATIA J N, WANG Y, KHOSO M A, FAROOQ U, CHEN S. AP2/ERF, an important cold stress-related transcription factor family in plants: A review. Physiology and Molecular Biology of Plants, 2021, 27(9): 1953-1968.
doi: 10.1007/s12298-021-01061-8 pmid: 34616115 |
[19] |
YU Z X, LI J X, YANG C Q, HU W L, WANG L J, CHEN X Y. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Molecular Plant, 2012, 5(2): 353-365.
doi: 10.1093/mp/ssr087 |
[20] |
XU S, HOU H, WU Z, ZHAO J, ZHANG F, TENG R, CHEN F, TENG N. Chrysanthemum embryo development is negatively affected by a novel ERF transcription factor, CmERF12. Journal of Experimental Botany, 2022, 73(1): 197-212.
doi: 10.1093/jxb/erab398 |
[21] |
FENG C Z, CHEN Y, WANG C, KONG Y H, WU W H, CHEN Y F. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. The Plant Journal, 2014, 80(4): 654-668.
doi: 10.1111/tpj.12670 |
[22] |
ZHANG J, LIAO J, LING Q, XI Y, QIAN Y. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance. BMC Genomics, 2022, 23(1): 125.
doi: 10.1186/s12864-022-08345-7 pmid: 35151253 |
[23] |
CHUCK G, MEELEY R, HAKE S. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development, 2008, 135(18): 3013-3019.
doi: 10.1242/dev.024273 pmid: 18701544 |
[24] | LIU W Y, LIN H H, YU C P, CHANG C K, CHEN H J, LIN J J, LU M J, TU S L, SHIU S H, WU S H, KU M S B, LI W H. Maize ANT1 modulates vascular development, chloroplast development, photosynthesis, and plant growth. Proceedings of the National Academy of Sciences, USA, 2020, 117(35): 21747-21756. |
[25] |
LID S E, AL R H, KREKLING T, MEELEY R B, RANCH J, OPSAHL-FERSTAD H G, OLSEN O A. The maize disorganized aleurone layer 1 and 2 (dil1, dil2) mutants lack control of the mitotic division plane in the aleurone layer of developing endosperm. Planta, 2004, 218(3): 370-378.
doi: 10.1007/s00425-003-1116-2 |
[26] |
LI J, CHEN F, LI Y, LI P, WANG Y, MI G, YUAN L. ZmRAP2.7, an AP2 transcription factor, is involved in maize brace roots development. Frontiers in Plant Science, 2019, 10: 820.
doi: 10.3389/fpls.2019.00820 pmid: 31333689 |
[27] |
FU J, ZHU C, WANG C, LIU L, SHEN Q, XU D, WANG Q. Maize transcription factor ZmEREB20 enhanced salt tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2021, 159:257-267.
doi: 10.1016/j.plaphy.2020.12.027 |
[28] |
ZANG Z, WANG Z, ZHAO F, YANG W, CI J, REN X, JIANG L, YANG W. Maize ethylene response factor ZmERF061 is required for resistance to Exserohilum turcicum. Frontiers in Plant Science, 2021, 12: 630413.
doi: 10.3389/fpls.2021.630413 |
[29] |
LI S, WANG H, LI F, CHEN Z, LI X, ZHU L, WANG G, YU J, HUANG D, LANG Z. The maize transcription factor EREB58 mediates the jasmonate-induced production of sesquiterpene volatiles. The Plant Journal, 2015, 84(2): 296-308.
doi: 10.1111/tpj.12994 pmid: 26303437 |
[30] |
SUN F, DING L, FENG W, CAO Y, LU F, YANG Q, LI W, LU Y, SHABEK N, FU F, YU H. Maize transcription factor ZmBES1/ BZR1-5 positively regulates kernel size. Journal of Experimental Botany, 2021, 72(5): 1714-1726.
doi: 10.1093/jxb/eraa544 |
[31] |
SUN F A, YU H Q, QU J T, CAO Y, DING L, FENG W Q, MUHAMMAD H B K, LI W C, FU F L. Maize ZmBES1/BZR1-5 decreases ABA sensitivity and confers tolerance to osmotic stress in transgenic Arabidopsis. International Journal of Molecular Sciences, 2020, 21(3): 996.
doi: 10.3390/ijms21030996 |
[32] |
冯文奇, 孙福艾, 丁磊, 郭新, 李晚忱, 付凤玲, 于好强. 玉米转录因子ZmBES1/BZR1-7基因克隆及功能分析. 核农学报, 2020, 34(1): 17-25.
doi: 10.11869/j.issn.100-8551.2020.01.0017 |
FENG W Q, SUN F A, DING L, GUO X, LI W C, FU F L, YU H Q. Cloning and function analysis of ZmBES1/BZR1-7 gene in maize. Journal of Nuclear Agricultural Sciences, 2020, 34(1): 17-25. (in Chinese)
doi: 10.11869/j.issn.100-8551.2020.01.0017 |
|
[33] |
WALLEY J W, SARTOR R C, SHEN Z, SCHMITZ R J, WU K J, URICH M A, NERY J R, SMITH L G, SCHNABLE J C, ECKER J R, BRIGGS S P. Integration of omic networks in a developmental atlas of maize. Science, 2016, 353(6301): 814-818.
doi: 10.1126/science.aag1125 pmid: 27540173 |
[34] |
XIONG F, ZHANG B K, LIU H H, WEI G, WU J H, WU Y N, ZHANG Y, LI S. Transcriptional regulation of PLETHORA1 in the root meristem through an importin and its two Antagonistic Cargos. The Plant Cell, 2020, 32(12): 3812-3824.
doi: 10.1105/tpc.20.00108 |
[35] |
TRENTMANN S M. ERN1, a novel ethylene-regulated nuclear protein of Arabidopsis. Plant Molecular Biology, 2000, 44(1): 11-25.
doi: 10.1023/A:1006438432198 |
[36] |
KANG M, FOKAR M, ABDELMAGEED H, ALLEN R D. Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity. Plant Molecular Biology, 2011, 75(4/5): 451-466.
doi: 10.1007/s11103-011-9748-2 |
[37] |
ZHANG J, LIAO J, LING Q, XI Y, QIAN Y. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance. BMC Genomics, 2022, 23: 125.
doi: 10.1186/s12864-022-08345-7 pmid: 35151253 |
[38] |
XU J J, ZHANG X F, XUE H W. Rice aleurone layer specific OsNF-YB1 regulates grain filling and endosperm development by interacting with an ERF transcription factor. Journal of Experimental Botany, 2016, 67(22): 6399-6411.
doi: 10.1093/jxb/erw409 |
[39] |
XU S, HOU H, WU Z, ZHAO J, ZHANG F, TENG R, CHEN F, TENG N. Chrysanthemum embryo development is negatively affected by a novel ERF transcription factor, CmERF12. Journal of Experimental Botany, 2022, 73(1): 197-212.
doi: 10.1093/jxb/erab398 |
[40] |
LIU C, MA T, YUAN D, ZHOU Y, LONG Y, LI Z, DONG Z, DUAN M, YU D, JING Y, BAI X, WANG Y, HOU Q, LIU S, ZHANG J S, CHEN S Y, LI D, LIU X, LI Z, WANG W, LI J, WEI X, MA B, WAN X. The OsEIL1-OsERF115-target gene regulatory module controls grain size and weight in rice. Plant Biotechnology Journal, 2022. Doi: 10.1111/pbi.13825.
doi: 10.1111/pbi.13825 |
[41] |
CHANDLER J W, WERR W. A phylogenetically conserved APETALA2/ETHYLENE RESPONSE FACTOR, ERF12, regulates Arabidopsis floral development. Plant Molecular Biology, 2020, 102: 39-54.
doi: 10.1007/s11103-019-00936-5 |
[42] |
CHEN X, FENG F, QI W, XU L, YAO D, WANG Q, SONG R. Dek35 encodes a PPR protein that affects cis-splicing of mitochondrial nad4 intron 1 and seed development in maize. Molecular Plant, 2017, 10(3): 427-441.
doi: 10.1016/j.molp.2016.08.008 |
[43] |
CAI M, LI S, SUN F, SUN Q, ZHAO H, REN X, ZHAO Y, TAN B C, ZHANG Z, QIU F. Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad2 intron 1 and seed development in maize. The Plant Journal, 2017, 91(1): 132-144.
doi: 10.1111/tpj.13551 |
[1] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[2] | 柴海燕,贾娇,白雪,孟玲敏,张伟,金嵘,吴宏斌,苏前富. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性[J]. 中国农业科学, 2023, 56(1): 64-78. |
[3] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[4] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[5] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[6] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[7] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[8] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[9] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. |
[10] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[11] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[12] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[13] | 乔远,杨欢,雒金麟,汪思娴,梁蓝月,陈新平,张务帅. 西北地区玉米生产投入及生态环境风险评价[J]. 中国农业科学, 2022, 55(5): 962-976. |
[14] | 黄兆福, 李璐璐, 侯梁宇, 高尚, 明博, 谢瑞芝, 侯鹏, 王克如, 薛军, 李少昆. 不同种植区玉米生理成熟后田间站秆脱水的积温需求[J]. 中国农业科学, 2022, 55(4): 680-691. |
[15] | 石习, 宁丽华, 葛敏, 邬奇, 赵涵. 玉米氮状况相关生物标记物的筛选和应用[J]. 中国农业科学, 2022, 55(3): 438-450. |
|