中国农业科学 ›› 2021, Vol. 54 ›› Issue (15): 3168-3182.doi: 10.3864/j.issn.0578-1752.2021.15.003
渠可心(),韩露,谢建国,潘文婧,张泽鑫,辛大伟,刘春燕,陈庆山(
),齐照明(
)
收稿日期:
2021-02-03
接受日期:
2021-03-22
出版日期:
2021-08-01
发布日期:
2021-08-10
通讯作者:
陈庆山,齐照明
作者简介:
渠可心,E-mail: 基金资助:
QU KeXin(),HAN Lu,XIE JianGuo,PAN WenJing,ZHANG ZeXin,XIN DaWei,LIU ChunYan,CHEN QingShan(
),QI ZhaoMing(
)
Received:
2021-02-03
Accepted:
2021-03-22
Online:
2021-08-01
Published:
2021-08-10
Contact:
QingShan CHEN,ZhaoMing QI
摘要:
【目的】 大豆(Glycine max)原产于中国,高品质的大豆在食品、饲料、纺织品等多种加工业中广泛应用,因此,选育高品质大豆已成为育种者和生产者的聚焦问题。通过对大豆脂肪酸各组分进行QTL定位及候选基因的筛选,为大豆品质改良奠定分子基础。【方法】 以美国大豆品种Charleston和东农594为亲本构建重组自交系(RILs)、以栽培大豆绥农14与野生大豆ZYD00006为亲本构建染色体片段代换系(CSSLs)为试验材料。利用气相色谱法测定2个群体的脂肪酸含量,根据东北农业大学农学院大豆遗传改良实验室已构建的遗传图谱,通过Windows QTL Cartographer 2.5和ICIMapping软件对2017—2018年RIL群体与CSSL群体中的大豆脂肪酸组分进行QTL定位研究,并对所获得的QTL置信区间进行候选基因的挖掘。【结果】 2017—2018年,RIL群体和CSSL群体分别定位到34和20个与脂肪酸组分相关的QTL,分布在除B2、C1、G、H、J、M和O以外的13个连锁群上。比较2个群体的QTL定位结果,发现在2个群体中重复检测到10对QTL,其中,分布在A1、C2、D1a、F、K和N连锁群上的QTL与多种脂肪酸含量相关,在A1连锁群上检测到亚油酸和油分含量重叠的QTL;在C2连锁群上检测到硬脂酸和油分含量重叠的QTL;在D1a连锁群上检测到硬脂酸和油分含量重叠的QTL;在F连锁群上检测到棕榈酸、硬脂酸和油分含量重叠的QTL;在K连锁群上检测到亚油酸和亚麻酸含量重叠的QTL;在N连锁群上检测到棕榈酸和油分含量重叠的QTL、油酸和亚油酸含量重叠的QTL。对QTL定位获得的所有置信区间进行候选基因的挖掘,从基因注释数据集中共筛选出485个候选基因,其中,271个候选基因具有GO注释,进一步进行GO富集数据分析,共有15个候选基因与脂肪酸相关。主要通过编码植物酰基-酰基载体蛋白(ACP)硫酯酶、脂肪酸去饱和酶、磷脂酶D1、脂肪酸-羟化酶、丙酮酸激酶和参与酰基辅酶A生物合成、调节脂肪酸链的延伸,从而影响脂肪酸的合成。【结论】 共检测到54个与大豆脂肪酸各组分相关的QTL,在2个群体中重复检测到10对QTL,对QTL定位获得的置信区间进行候选基因的筛选,共有15个候选基因与脂肪酸相关。这些稳定的脂肪酸相关的QTL和脂肪酸相关的候选基因可用于大豆脂肪酸改良的分子标记辅助选择。
渠可心,韩露,谢建国,潘文婧,张泽鑫,辛大伟,刘春燕,陈庆山,齐照明. 基于RIL和CSSL群体定位大豆脂肪酸组分QTL[J]. 中国农业科学, 2021, 54(15): 3168-3182.
QU KeXin,HAN Lu,XIE JianGuo,PAN WenJing,ZHANG ZeXin,XIN DaWei,LIU ChunYan,CHEN QingShan,QI ZhaoMing. Mapping QTL for Soybean Fatty Acid Composition Based on RIL and CSSL Population[J]. Scientia Agricultura Sinica, 2021, 54(15): 3168-3182.
表1
2个群体亲本和后代单株脂肪酸含量的基本统计"
性状 Trait | 群体 Population | 亲本Parent | 群体Population | |||||||
---|---|---|---|---|---|---|---|---|---|---|
父本 Male | 母本 Female | 最小值 Minimum | 最大值 Maximum | 平均值 Mean | 标准差 SD | 变异系数 CV | 偏度 Skewness | 峰度 Kurtosis | ||
棕榈酸 PA (%) | 17-RIL | 12.80 | 13.15 | 11.48 | 13.98 | 13.05 | 0.42 | 3.21 | -0.76 | 1.82 |
17-CSSL | 12.75 | 13.17 | 12.62 | 13.33 | 13.03 | 0.15 | 1.13 | -0.18 | -0.61 | |
18-RIL | 12.74 | 13.09 | 12.11 | 13.27 | 12.90 | 0.18 | 1.42 | -0.63 | -1.04 | |
18-CSSL | 12.81 | 13.12 | 12.70 | 13.60 | 13.05 | 0.15 | 1.16 | -0.09 | -0.05 | |
硬脂酸 SA (%) | 17-RIL | 4.09 | 4.28 | 3.59 | 5.19 | 4.40 | 0.31 | 6.99 | -0.43 | 0.15 |
17-CSSL | 3.94 | 4.17 | 3.64 | 4.95 | 4.19 | 0.17 | 4.17 | 0.21 | 1.19 | |
18-RIL | 4.03 | 4.23 | 3.92 | 4.99 | 4.53 | 0.27 | 5.88 | -0.28 | -0.86 | |
18-CSSL | 4.04 | 4.15 | 3.80 | 4.68 | 4.23 | 0.17 | 3.91 | 0.28 | -0.01 | |
油酸 OA (%) | 17-RIL | 19.19 | 20.35 | 17.00 | 23.53 | 19.33 | 1.12 | 5.78 | 0.84 | 1.59 |
17-CSSL | 19.10 | 20.71 | 17.00 | 22.20 | 19.61 | 1.17 | 5.94 | 0.16 | -0.63 | |
18-RIL | 19.13 | 20.06 | 18.09 | 22.25 | 19.53 | 0.83 | 4.25 | 0.64 | 0.59 | |
18-CSSL | 19.29 | 20.72 | 17.03 | 22.25 | 19.45 | 0.98 | 5.03 | 0.43 | -0.13 | |
亚油酸 LA (%) | 17-RIL | 54.81 | 53.35 | 51.15 | 57.37 | 54.28 | 1.16 | 2.13 | 0.12 | 0.46 |
17-CSSL | 55.17 | 53.19 | 51.59 | 57.37 | 54.20 | 1.25 | 2.31 | -0.07 | -0.62 | |
18-RIL | 54.97 | 53.76 | 51.47 | 56.12 | 54.10 | 0.95 | 1.76 | -0.14 | -0.06 | |
18-CSSL | 54.85 | 53.14 | 51.65 | 57.09 | 54.27 | 1.06 | 1.95 | -0.29 | -0.29 | |
亚麻酸 LNA (%) | 17-RIL | 9.11 | 8.87 | 7.75 | 10.87 | 8.94 | 0.40 | 4.51 | 0.47 | 3.93 |
17-CSSL | 9.04 | 8.76 | 8.52 | 9.63 | 8.98 | 0.20 | 2.25 | 0.22 | -0.42 | |
18-RIL | 9.13 | 8.86 | 8.29 | 9.34 | 8.93 | 0.19 | 2.11 | -0.81 | 0.37 | |
18-CSSL | 9.01 | 8.87 | 8.30 | 9.63 | 8.99 | 0.19 | 2.12 | -0.26 | 0.96 | |
油分 OIL (%) | 17-RIL | 20.25 | 21.62 | 19.82 | 24.26 | 21.94 | 0.99 | 4.53 | -0.08 | -0.44 |
17-CSSL | 20.79 | 21.34 | 19.74 | 23.35 | 21.70 | 0.96 | 4.40 | -0.24 | -0.97 | |
18-RIL | 20.11 | 21.46 | 19.66 | 23.38 | 21.58 | 1.04 | 4.83 | -0.11 | -1.04 | |
18-CSSL | 20.53 | 21.19 | 19.87 | 23.33 | 21.74 | 1.00 | 4.59 | -0.36 | -0.93 |
表4
RIL群体脂肪酸含量QTL定位"
性状 Trait | 年份 Year | QTL名称 QTL name | 染色体 Chromosome | 起始位置 Start position (Mb) | 终止位置 End position (Mb) | 距离 Size (Mb) | LOD | 贡献率 R2 (%) | 加性效应 Additive effect |
---|---|---|---|---|---|---|---|---|---|
棕榈酸 PA | 2017 | qPA-N-1 | 3 | 14.80 | 18.50 | 3.70 | 4.00 | 9.56 | 0.15 |
2017 | qPA-C2-1 | 6 | 20.47 | 21.61 | 1.14 | 4.44 | 10.51 | -0.05 | |
2017 | qPA-C2-2 | 6 | 27.37 | 27.84 | 0.46 | 3.74 | 8.95 | -0.04 | |
2017 | qPA-E-1 | 15 | 33.29 | 33.49 | 0.21 | 2.64 | 6.66 | -0.06 | |
2017 | qPA-E-2 | 15 | 32.53 | 32.61 | 0.07 | 5.60 | 13.50 | -0.09 | |
2017 | qPA-E-3 | 15 | 28.34 | 28.72 | 0.37 | 3.84 | 9.05 | 0.07 | |
2017 | qPA-E-4 | 15 | 22.73 | 22.77 | 0.04 | 2.70 | 6.47 | 0.05 | |
2018 | qPA-D1b-1 | 2 | 42.46 | 42.49 | 0.03 | 3.73 | 8.99 | -0.05 | |
2018 | qPA-A1-1 | 5 | 34.54 | 34.55 | 0.01 | 2.89 | 6.96 | -0.04 | |
2018 | qPA-F-1 | 13 | 15.74 | 15.83 | 0.09 | 5.32 | 13.16 | 0.09 | |
硬脂酸 SA | 2017 | qSA-N-1 | 3 | 40.50 | 44.10 | 3.60 | 2.98 | 7.62 | -0.03 |
2018 | qSA-D1b-1 | 2 | 42.61 | 42.62 | 0.01 | 2.84 | 6.90 | -0.03 | |
2018 | qSA-F-1 | 13 | 15.74 | 15.83 | 0.09 | 4.51 | 11.11 | 0.06 | |
2018 | qSA-D2-1 | 17 | 38.23 | 38.91 | 0.68 | 3.20 | 7.73 | 0.03 | |
油酸 OA | 2017 | qOA-D1a-1 | 1 | 13.87 | 14.26 | 0.39 | 3.24 | 7.71 | 0.10 |
2017 | qOA-N-1 | 3 | 23.25 | 23.29 | 0.04 | 3.86 | 9.09 | -0.11 | |
2017 | qOA-N-2 | 3 | 24.72 | 24.96 | 0.24 | 3.89 | 9.17 | -0.11 | |
2017 | qOA-A1-1 | 5 | 38.94 | 39.09 | 0.15 | 2.65 | 5.64 | 0.10 | |
2017 | qOA-D2-1 | 17 | 36.95 | 37.10 | 0.16 | 2.94 | 7.40 | 0.10 | |
2018 | qOA-A1-2 | 5 | 38.94 | 39.09 | 0.15 | 3.65 | 7.64 | 0.13 | |
2018 | qOA-D2-2 | 17 | 36.95 | 37.10 | 0.16 | 3.94 | 9.43 | 0.12 | |
亚油酸 LA | 2017 | qLA-N-1 | 3 | 23.05 | 23.11 | 0.06 | 2.76 | 6.99 | -0.24 |
2017 | qLA-N-2 | 3 | 28.10 | 28.27 | 0.17 | 3.25 | 8.29 | 0.26 | |
2017 | qLA-K-1 | 9 | 33.51 | 33.52 | 0.01 | 3.26 | 8.34 | -0.19 | |
2017 | qLA-L-1 | 19 | 42.92 | 43.49 | 0.57 | 2.86 | 7.26 | 0.19 | |
2018 | qLA- A1-1 | 5 | 0.03 | 0.80 | 0.77 | 3.10 | 8.03 | 0.17 | |
2018 | qLA-I-1 | 20 | 24.43 | 24.44 | 0.02 | 2.54 | 6.40 | -0.16 | |
亚麻酸 LNA | 2017 | qLNA-N-1 | 3 | 37.15 | 37.22 | 0.07 | 4.19 | 10.13 | 0.05 |
2017 | qLNA-K-1 | 9 | 33.51 | 33.52 | 0.01 | 5.46 | 13.49 | -0.05 | |
2017 | qLNA-B1-1 | 11 | 38.31 | 38.71 | 0.39 | 3.25 | 7.74 | -0.04 | |
2018 | qLNA -B1-2 | 11 | 38.31 | 38.71 | 0.39 | 4.25 | 9.89 | -0.07 | |
2018 | qLNA-I-1 | 20 | 45.55 | 45.74 | 0.19 | 3.20 | 8.16 | 0.03 | |
油分 OIL | 2017 | qOIL- D1b-1 | 2 | 6.25 | 6.51 | 0.25 | 2.67 | 6.95 | -0.60 |
2018 | qOIL-F-1 | 13 | 15.74 | 15.83 | 0.09 | 3.79 | 10.04 | 0.58 |
表5
CSSL群体脂肪酸含量QTL定位"
性状 Trait | 年份 Year | QTL名称 QTL name | 染色体 Chromosome | 起始位置 Start position (Mb) | 终止位置 End position (Mb) | 距离 Size (Mb) | LOD值 LOD | 贡献率 PVE (%) | 加性效应 Additive effect |
---|---|---|---|---|---|---|---|---|---|
棕榈酸 PA | 2017 | qPA-N-2 | 3 | 18.57 | 19.23 | 0.66 | 2.86 | 4.62 | 0.16 |
2018 | qPA-N-3 | 3 | 18.57 | 19.23 | 0.66 | 6.87 | 7.75 | 0.16 | |
硬脂酸 SA | 2017 | qSA-C2-1 | 6 | 49.19 | 49.24 | 0.05 | 1.78 | 3.21 | 0.41 |
2018 | qSA-D1a-1 | 1 | 5.71 | 5.79 | 0.08 | 2.95 | 5.00 | 0.27 | |
油酸 OA | 2017 | qOA-F-1 | 13 | 13.72 | 13.81 | 0.09 | 9.60 | 8.80 | 0.30 |
2017 | qOA-E-1 | 15 | 40.66 | 40.67 | 0.01 | 3.98 | 5.22 | 0.29 | |
2018 | qOA-D2-3 | 17 | 14.17 | 14.25 | 0.09 | 2.75 | 4.49 | 0.22 | |
亚油酸 LA | 2017 | qLA-A1-2 | 5 | 0.51 | 0.53 | 0.02 | 11.65 | 22.09 | 0.33 |
2018 | qLA-A1-3 | 5 | 0.51 | 0.53 | 0.02 | 2.59 | 4.28 | 1.02 | |
亚麻酸 LNA | 2017 | qLNA-A1-1 | 5 | 34.40 | 34.44 | 0.04 | 3.80 | 3.93 | 0.05 |
2017 | qLNA-A2-1 | 8 | 2.45 | 2.49 | 0.03 | 4.43 | 4.73 | 0.03 | |
2018 | qLNA-K-2 | 9 | 2.35 | 2.40 | 0.05 | 2.31 | 2.92 | 0.23 | |
2018 | qLNA-F-1 | 13 | 0.80 | 0.82 | 0.02 | 2.96 | 2.97 | 0.07 | |
2018 | qLNA-F-2 | 13 | 11.48 | 11.55 | 0.07 | 5.51 | 5.86 | -0.04 | |
2018 | qLNA-E-1 | 15 | 49.40 | 49.44 | 0.03 | 2.97 | 3.01 | 0.04 | |
油分 OIL | 2017 | qOIL- D1a-1 | 1 | 5.71 | 5.79 | 0.08 | 3.59 | 7.96 | 0.43 |
2017 | qOIL-N-1 | 3 | 18.57 | 19.23 | 0.66 | 3.37 | 7.44 | 0.31 | |
2017 | qOIL-C2-1 | 6 | 49.19 | 49.24 | 0.05 | 3.67 | 8.14 | 0.52 | |
2018 | qOIL-A1-1 | 5 | 0.51 | 0.53 | 0.02 | 1.84 | 3.02 | 1.43 | |
2018 | qOIL-F-2 | 13 | 31.17 | 31.19 | 0.02 | 2.74 | 3.71 | 0.36 |
表6
基因注释候选基因"
基因 Gene | KO注释 KO annotation | GO注释 GO annotation | 同源基因 Homologous gene | 基因功能 Gene description |
---|---|---|---|---|
Glyma.02G073800 | GO:0016747 | Glyma.06G211200 | 乙醇-乙酰基转移酶Alcohol-acetyltransferase | |
Glyma.13G044100 | ||||
Glyma.02G074000 | GO:0008080 | 酰基辅酶a/酰基转移酶Acyl-CoA/N-acyltransferases (NAT) | ||
Glyma.03G070200 | K00167 | GO:0008152 | α-酮酸脱羧酶E1β亚基Alpha-keto acid decarboxylase E1 beta subunit | |
Glyma.05G007700 | GO:0016788 | Glyma.13G044500 | 脂肪酶/酰基水解酶Lipase/Acyl hydrolase | |
Glyma.19G171000 | ||||
Glyma.20G221200 | ||||
Glyma.05G008100 | K00326 | GO:0016491 | FAD/NAD(P)结合氧化还原酶 FAD/NAD(P)-binding oxidoreductase | |
Glyma.05G208900 | K15398 | GO:0055114 | 脂肪酸ω-羟化酶(CYP86A4S)Fatty acid omega-hydroxylase (CYP86A4S) | |
Glyma.05G000700 | K00873 | GO:0030955 | 丙酮酸激酶家族蛋白Pyruvate kinase family protein | |
Glyma.06G211300 | K10781 | GO:0006633 | 脂肪酰基-ACP硫酯酶B Fatty acyl-ACP thioesterases B | |
Glyma.17G219100 | 磷脂酶D1 Phospholipase D1 | |||
Glyma.17G228400 | K13076 | GO:0006629 | 脂肪酸去饱和酶Fatty acid desaturase |
[1] | QI Z M, ZHANG Z G, WANG Z Y, YU J Y, Qin H T, MAO X R, JIANG H W, XIN D W, YIN Z G, ZHU R S, LIU C Y, YU W, HU Z B, WU X X, LIU J, CHEN Q S. Meta-analysis and transcriptome profiling reveal HUB genes for soybean seed storage composition during seed development. Plant Cell & Environment, 2018, 41(9):2109-2127. |
[2] | WILSON R F. Soybean: Market driven research needs//Genetics and Genomics of Soybean. NewYork: Springer, 2008: 3-15. |
[3] | BELLALOUI N, BRUNS H A, ABBAS H K, MENGISTU A, FISHER D K, REDDY K N. Agricultural practices altered soybean seed protein, oil, fatty acids, sugars and minerals in the Midsouth USA. Frontiers in Plant Science, 2015, 6(31):31-44. |
[4] |
SPENCER M, PANTALONE V, MEYER E, LANDAU-ELLIS D, HYTEN D. Mapping the FAS locus controlling stearic acid content in soybean. Theoretical and Applied Genetics, 2003, 106(4):615-619.
doi: 10.1007/s00122-002-1086-y |
[5] | 左进华, 董海洲, 侯汉学. 大豆蛋白生产与应用现状. 粮食与油脂, 2007, 5(5):12-15. |
ZUO J H, DONG H Z, HOU H X. Current status of soy protein production and application. Grains and Fats, 2007, 5(5):12-15. (in Chinese) | |
[6] | 王连铮. 国内外大豆生产的现状和大豆品种创新问题. 中国食物与营养, 2006, 7(6):6-9. |
WANG L Z. The status quo of soybean production at home and abroad and the innovation of soybean varieties. Chinese Food and Nutrition, 2006, 7(6):6-9. (in Chinese) | |
[7] | 任波, 李毅. 大豆种子脂肪酸合成代谢的研究进展. 分子植物育种, 2005(3):301-306. |
REN B, LI Y. Research progress on fatty acid synthesis and metabolism of soybean seeds. Molecular Plant Breeding, 2005(3):301-306. (in Chinese) | |
[8] | WHIGHAM L D, WATRAS A C, SCHOELLER D A. Efficacy of conjugated linoleic acid for reducing fat mass: A meta-analysis in humans. American Journal of Clinical Nutrition, 2007(5):1203-1211. |
[9] |
TOMPKINS C, PERKINS E G. Frying performance of low-linolenic acid soybean oil. Journal of the American Oil Chemists’ Society, 2000, 77(3):223-229.
doi: 10.1007/s11746-000-0036-2 |
[10] |
SLOVER H T, LANZA E. Quantitative analysis of food fatty acids by capillary gas chromatography. Journal of the American Oil Chemists’ Society, 1979, 56(12):933-943.
doi: 10.1007/BF02674138 |
[11] |
STOFFEL W, CHU F, AHRENS JR E H. Analysis of long-chain fatty acids by gas-liquid chromatography. Analytical Chemistry, 1959, 31(2):307-308.
doi: 10.1021/ac60146a047 |
[12] |
PAZDERNIK D L, KILLAM A S, ORF J H. Analysis of amino and fatty acid composition in soybean seed, using near infrared reflectance spectroscopy. Agronomy Journal, 1997, 89(4):679-685.
doi: 10.2134/agronj1997.00021962008900040022x |
[13] |
SATO T, KAWANO S, IWAMOTO M. Near infrared spectral patterns of fatty acid analysis from fats and oils. Journal of the American Oil Chemists’ Society, 1991, 68(11):827-833.
doi: 10.1007/BF02660596 |
[14] |
WOOD R, LEE T. High-performance liquid chromatography of fatty acids: quantitative analysis of saturated, monoenoic, polyenoic and geometrical isomers. Journal of Chromatography A, 1983, 254(JAN):237-246.
doi: 10.1016/S0021-9673(01)88338-2 |
[15] |
AVELDANO M I, VANR OLLINS M, HORROCKS L A. Separation and quantitation of free fatty acids and fatty acid methyl esters by reverse phase high pressure liquid chromatography. Journal of Lipid Research, 1983, 24(1):83-93.
doi: 10.1016/S0022-2275(20)38027-5 |
[16] | 范胜栩, 李斌, 孙君明, 韩粉霞, 闫淑荣, 王岚. 气相色谱方法定量检测大豆5种脂肪酸. 中国油料作物学报, 2015, 37(4):548. |
FAN S X, LI B, SUN J M, HAN F X, YAN S R, WANG L. Gas chromatography method for quantitative detection of 5 fatty acids in soybean. Chinese Journal of Oil Crops, 2015, 37(4):548. (in Chinese) | |
[17] | 王芹, 冯景春, 冯开. 气相色谱法及其应用. 广东化工, 2014, 41(12):202-208. |
WANG Q, FENG J C, FENG K. Gas chromatography and its application. Guangdong Chemical Industry, 2014, 41(12):202-208. (in Chinese) | |
[18] |
LI H H, YE G Y, WANG J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175(1):361-374.
doi: 10.1534/genetics.106.066811 |
[19] |
JANSEN R C. Interval mapping of multiple quantitative trait loci. Genetics, 1993, 135(1):205-211.
doi: 10.1093/genetics/135.1.205 |
[20] | KAO C H, ZENG Z B, TEASDALE R D. Multiple interval mapping for quantitative trait loci. Genetics, 2004, 152(3):1987-2002. |
[21] |
RODOLPHE F, LEFORT M. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics, 1993, 134(4):1277-1288.
doi: 10.1093/genetics/134.4.1277 |
[22] | LI H H, RIBAUT J M, LI Z L, WANG J K. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theoretical & Applied Genetics, 2008, 116(2):243-260. |
[23] | 李慧慧. 数量性状基因的完备区间作图方法[D]. 北京: 北京师范大学, 2009. |
LI H H. A complete interval mapping method for quantitative trait genes[D]. Beijing: Beijing Normal University, 2009. (in Chinese) | |
[24] |
WELLER J I. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics, 1986, 42(3):627-640.
doi: 10.2307/2531212 |
[25] |
AKOND M, LIU S, BONEY M, KANTARTZI S K, KASSEM M A. Identification of quantitative trait loci (QTL)underlying protein, oil, and five major fatty acids' contents in soybean. American Journal of Plant Sciences, 2014, 5(1):158-167.
doi: 10.4236/ajps.2014.51021 |
[26] |
QIN H T, LIU Z X, WANG Y Y, XU M Y, QI Z M. Meta-analysis and overview analysis of quantitative trait locis associated with fatty acid content in soybean for candidate gene mining. Plant Breed, 2018, 137(2):181-193.
doi: 10.1111/pbr.2018.137.issue-2 |
[27] | LI B, FAN S X, YU F K, CHEN Y, ZHANG S R, HAN F X, YAN S R, WANG L Z, SUN J M. High-resolution mapping of QTL for fatty acid composition in soybean using specific locus amplified fragment sequencing. Theoretical & Applied Genetics, 2017, 130(7):1467-1479. |
[28] |
XIA N, WU D P, ZHAN Y H, LIU Y, SUN M Y, ZHAO X, TENG W L, HAN Y P. Dissection of genetic architecture for oil content in soybean seed using two backcross populations. Plant Breed, 2017, 136(7):365-371.
doi: 10.1111/pbr.2017.136.issue-3 |
[29] | FAN S X, LI B, YU F K, HAN F X, YAN S R, WANG L Z, SUN J M. Analysis of additive and epistatic quantitative trait loci underlying fatty acid concentrations in soybean seeds across multiple environments. Euphytica, 201, 206(3):689-700. |
[30] | 盛英华, 张延瑞, 戴亚楠, 昝光敏, 周凯, 王贤智. 不同群体中大豆脂肪酸组分QTL定位研究. 中国油料作物学报, 2020(5):796-806. |
SHENG Y H, ZHANG Y R, DAI Y N, ZAN G M, ZHOU K, WANG X Z. QTL mapping of soybean fatty acid components in different populations. Chinese Journal of Oil Crops, 2020(5):796-806. (in Chinese) | |
[31] | CHEN Q S, ZHANG Z C, LIU C Y, XIN D W, QIU H M, SHAN D P, SHAN C Y, HU G H. QTL analysis of major agronomic traits in soybean. Scientia Agriculture Sinica, 2007, 6(4):399-405. |
[32] |
QI Z M, HUANG L, ZHU R S, XIN D W, LIU C Y, HAN X, JIANG H W, HONG W G, HU G H, ZHENG H K, CHEN Q S. A high-density genetic map for soybean based on specific length amplified fragment sequencing. PLoS ONE, 2014, 9(8):e104871.
doi: 10.1371/journal.pone.0104871 |
[33] |
XIN D W, QI Z M, JIANG H W, ZHANG Z G, ZHU R S, HU J H, HAN H Y, HU G H, LIU C Y, CHEN Q S. QTL locationand epistatic effect analysis of 100-seed weight using wild soybean (Glycine soja Sieb. & Zucc.) chromosome segment substitution lines. PLoS ONE, 2016, 11(3):e0149380.
doi: 10.1371/journal.pone.0149380 |
[34] | MCCOUCH S R, CHO Y G, YANO M, PAUL E, BLINSTRUB M, MORISHIMA H, KINOSITA T. Report on QTL nomenclature. Rice Genetics Newsletter, 1997, 14:11-13. |
[35] |
JIANG H W, LI Y Y, QIN H T, LI Y L, QI H D, LI C D, WANG N N, LI R C, ZHAO Y Y, HAUNG S Y, YU J Y, WANG X Y, ZHU R S, LIU C Y, HU Z B, QI Z M, XIN D W, WU X X, CHEN Q S. Identification of major QTLs associated with first pod height and candidate gene mining in soybean. Frontiers in Plant Science, 2018, 9:1280
doi: 10.3389/fpls.2018.01280 |
[36] |
WANG X Y, LI Q Y, ZHANG Q, YU J Y, QIN H T, QI H D, LI Y L, LI Y Y, YIN Z G, HAN X, WU X X, XIN D W, CHEN Q S, QI Z M. Identification of soybean genes related to fatty acid content based on a soybean genome collinearity analysis. Plant Breeding, 2019, 138(6):696-707.
doi: 10.1111/pbr.v138.6 |
[37] |
BAUD S, GUYON V, KRONENBERGER J, WUILLEME S, MIQUEL M, CABOCHE M, LEPINIEC L, ROCHAT C. Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. The Plant Journal, 2010, 33(1):75-86.
doi: 10.1046/j.1365-313X.2003.016010.x |
[38] |
GOETTEL W, RAMIREZ M, UPCHURCH R G, CHARLES Y Q. Identification and characterization of large DNA deletions affecting oil quality traits in soybean seeds through transcriptome sequencing analysis. Theoretical and Applied Genetics, 2016, 129(8):1577-1593.
doi: 10.1007/s00122-016-2725-z |
[39] |
PETTITT T R, MARTIN A, HORTON T, LIOSSIS C, LORD J M, WAKELAM M. Diacylglycerol and phosphatidate generated by phospholipases C and D, respectively, have distinct fatty acid compositions and functions phospholipase d-derived diacylglycerol does not activate protein kinase c in porcine aortic endothelial cells. Journal of Biological Chemistry, 1997, 272(28):17354-17359.
doi: 10.1074/jbc.272.28.17354 |
[40] | WILSON C H, SHALINI S, FILIPOVSKA A, RICHMAN T R, KUMAR S. Age-related proteostasis and metabolic alterations in Caspase-2-deficient mice. Cell Death & Disease, 2015, 6(1):e1597. |
[41] |
BARTLEY I M, STOKER P G, MARTIN A D E, HATFIELD S G S, KNEE M. Synthesis of aroma compounds by apples supplied with alcohols and methyl esters of fatty acids. Journal of the Science of Food and Agriculture, 1985, 36:567-574.
doi: 10.1002/(ISSN)1097-0010 |
[42] | KOTELES J. Fatty acid ω-hydroxylases in soybean[D]. Canada Ontario: The University of Western Ontario, 2012. |
[43] | AMBASHT P K, KAYASTHA A M. Plant pyruvate kinase. Biologia Plantarum, 2002, 45(1):1-10. |
[44] |
ANDRE C, FROEHLICH J E, MOLL M R, BENNING C. A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. The Plant Cell, 2007, 19(6):2006-2022.
doi: 10.1105/tpc.106.048629 |
[45] | HUANG P Y, LUO L J. Effect on pyruvate kinase in high plants. Journal of Anhui Agricultural Sciences, 2009, 37(20):9352-9354. |
[46] | 蒋洪蔚, 刘春燕, 高运来, 李灿东, 张闻博, 胡国华, 陈庆山. 作物QTL定位常用作图群体. 生物技术通报, 2008, 1(20):12-17. |
JIANG H W, LIU C Y, GAO Y L, LI C D, ZHANG W B, HU G H, CHEN Q S. Crop QTL mapping is often used as a map population. Biotechnology Bulletin, 2008, 1(20):12-17. (in Chinese) | |
[47] |
MA X, CHEN X P, ZHAO J, WANG S S, TAN L B, SUN C Q, LIU F X. Identification of QTLs related to cadmium tolerance from wild rice (Oryza nivara) using a high-density genetic map for a set of introgression lines. Euphytica, 2019, 215(12):1-12.
doi: 10.1007/s10681-018-2319-8 |
[48] | 李晶晶, 王利锋, 马娟, 曹言勇, 王浩, 王丽艳, 贾腾蛟, 董春林, 李会勇. 基于昌7-2导入系发掘干旱胁迫下玉米产量相关QTL位点. 玉米科学, 2019, 27(4):64-70. |
LI J J, WANG L F, MA J, CAO Y Y, WANG H, WANG L Y, JIA T J, DONG C L, LI H Y. Discovery of QTLs related to maize yield under drought stress based on Chang 7-2 introduced line. Maize Science, 2019, 27(4):64-70. (in Chinese) | |
[49] | 于福宽. 大豆种质脂肪酸主要组分鉴定与QTL标记定位[D]. 北京: 中国农业科学院, 2011. |
YU F K. Identification of the main fatty acid components of soybean germplasm and QTL mapping[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese) | |
[50] | 朱明月. 利用回交导入系群体定位大豆蛋白质、脂肪含量及脂肪酸含量QTL[D]. 北京: 中国农业科学院, 2017. |
ZHU M Y. Using backcross introduction line population to locate soybean protein, fat content and fatty acid content QTL[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese) | |
[51] | DIERS B W, KEIM P, FEHR W R, SHOEMAKER R C. RFLP analysis of soybean seed protein and oil content. Theoretical and Applied Genetics, 1992, 83(5):608-612. |
[52] |
HYTEN D L, PANTALONE V R, SAXTON A M, SCHMIDT M E, SAMS C E. Molecular mapping and identification of soybean fatty acid modifier quantitative trait loci. Journal of the American Oil Chemists Society, 2004, 81(12):1115-1118.
doi: 10.1007/s11746-004-1027-z |
[53] | 叶桑, 崔翠, 郜欢欢, 雷维, 王刘艳, 王瑞莉, 陈柳依, 曲存民, 唐章林, 李加纳. 基于SNP遗传图谱对甘蓝型油菜部分脂肪酸组成性状的QTL定位. 中国农业科学, 2019, 52(21):26-40. |
YE S, CUI C, GAO H H, LEI W, WANG L Y, WANG R L, CHEN L Y, QU C M, TANG Z L, LI J N. QTL mapping of some fatty acid composition traits in Brassica napus based on SNP genetic map. China Agricultural Sciences, 2019, 52(21):26-40. (in Chinese) |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[3] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[4] | 郭世博,张方亮,张镇涛,周丽涛,赵锦,杨晓光. 全球气候变暖对中国种植制度的可能影响XIV.东北大豆高产稳产区及农业气象灾害分析[J]. 中国农业科学, 2022, 55(9): 1763-1780. |
[5] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[6] | 阿依木古丽·阿不都热依木,阿尔祖古丽·阿依丁,王家敏,石嘉琛,马芳芳,蔡勇,乔自林. 大豆异黄酮对牦牛卵巢颗粒细胞增殖和凋亡的影响[J]. 中国农业科学, 2022, 55(8): 1667-1675. |
[7] | 王绿阳,崔雷鸿,冯江银,洪秋霞,游美敬,保浩宇,杭苏琴. 钙敏感受体和胆囊收缩素-1受体介导大豆蛋白水解物对小鼠食欲的影响[J]. 中国农业科学, 2022, 55(4): 807-815. |
[8] | 姜芬芬, 孙磊, 刘方东, 王吴彬, 邢光南, 张焦平, 张逢凯, 李宁, 李艳, 贺建波, 盖钧镒. 世界大豆生育阶段光温综合反应的地理分化和演化[J]. 中国农业科学, 2022, 55(3): 451-466. |
[9] | 刘进,胡佳晓,马小定,陈武,勒思,Jo Sumin,崔迪,周慧颖,张立娜,Shin Dongjin,黎毛毛,韩龙植,余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位[J]. 中国农业科学, 2022, 55(22): 4327-4341. |
[10] | 闫强,薛冬,胡亚群,周琰琰,韦雅雯,袁星星,陈新. 大豆根特异性GmPR1-9启动子的鉴定及其在根腐病抗性中的应用[J]. 中国农业科学, 2022, 55(20): 3885-3896. |
[11] | 邹林翰,周新颖,张泽源,蔚睿,袁梦,宋晓朋,简俊涛,张传量,韩德俊,宋全昊. 小麦周8425B×小偃81重组自交系群体千粒重相关性状的QTL定位及单倍型分析[J]. 中国农业科学, 2022, 55(18): 3473-3483. |
[12] | 王巧娟,何虹,李亮,张超,蔡焕杰. 基于AquaCrop模型的大豆灌溉制度优化研究[J]. 中国农业科学, 2022, 55(17): 3365-3379. |
[13] | 常立国,何坤辉,刘建超. 多环境下玉米保绿相关性状遗传位点的挖掘[J]. 中国农业科学, 2022, 55(16): 3071-3081. |
[14] | 原程,张玉先,王孟雪,黄炳林,辛明强,尹小刚,胡国华,张明聪. 中耕时间和深度对大豆光合特性及产量形成的影响[J]. 中国农业科学, 2022, 55(15): 2911-2926. |
[15] | 赵玎玲,王梦璇,孙天杰,苏伟华,赵志华,肖付明,赵青松,闫龙,张洁,王冬梅. 大豆单锌指蛋白基因GmSZFP的克隆及其在SMV与寄主互作中的功能[J]. 中国农业科学, 2022, 55(14): 2685-2695. |
|