[1] |
BARELLI L, MOONJELY S, BEHIE S W, BIDOCHKA M J. Fungi with multifunctional lifestyles: Endophytic insect pathogenic fungi. Plant Molecular Biology, 2016,90(6):657-664.
|
[2] |
JULIYA R F. Biocontrol potential and genetic diversity of Metarhizium anisopliae lineage in agricultural habitats. Journal of Applied Microbiology, 2019,127(2):556-564.
|
[3] |
CLARKSON J M, CHARNLEY A K. New insights into the mechanisms of fungal pathogenesis in insects. Trends in Microbiology, 1996,4(5):197-203.
|
[4] |
BARELLI L, PADILLA-GUERRERO I E, BIDOCHKA M J. Differential expression of insect and plant specific adhesin genes, MAD1 and MAD2, in Metarhizium robertsii. Fungal Biology, 2011,115(11):1174-1185.
|
[5] |
WANG C, ST LEGER R J. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryotic Cell, 2007,6(5):808-816.
|
[6] |
赵宇, 张佳诗, 刘艳微, 王佳江, 徐文静, 张冬娜, 赵慧, 张正坤, 李启云. 创制转Mad1基因球孢白僵菌工程菌株提高对玉米螟毒力. 玉米科学, 2019,27(5):39-44, 51.
|
|
ZHAO Y, ZHANG J S, LIU Y W, WANG J J, XU W J, ZHANG D N, ZHAO H, ZHANG Z K, LI Q Y. Construction of Mad1 gene transgenic Beauveria bassiana strain to promote the toxicity against Ostrinia furnacalis. Journal of Maize Sciences, 2019,27(5):39-44, 51. (in Chinese)
|
[7] |
ABRO N A, WANG G J, ULLAH H, GUO L L, HAO K, NONG X Q, CAI N, TU X B, ZHANG Z H. Influence of Metarhizium anisopliae (IMI330189) and Mad1 protein on enzymatic activities and Toll- related genes of migratory locust. Environmental Science and Pollution Research International, 2019,26(17):17797-17808.
|
[8] |
SASAN R K, BIDOCHKA M J. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany, 2012,99(1):101-107.
|
[9] |
GARCÍA J E, POSADAS J B, PERTICARI A, LECUONA R E. Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Advances in Biological Research, 2011,5(1):22-27.
|
[10] |
CAI N, WANG F, NONG X Q, WANG G J, MCNEILL M, CAO G C, HAO K, LIU S F, ZHANG Z H. Visualising confirmation of the endophytic relationship of Metarhizium anisopliae with maize roots using molecular tools and fluorescent labelling. Biocontrol Science and Technology, 2019,29(11):1023-1036.
|
[11] |
TANG D, WANG G, ZHOU J M. Receptor kinases in plant-pathogen interactions: More than pattern recognition. The Plant Cell, 2017,29(4):618-637.
|
[12] |
JONES J D, DANGL J L. The plant immune system. Nature, 2006,444(7117):323-329.
|
[13] |
WOLF S. Plant cell wall signalling and receptor-like kinases. The Biochemical Journal, 2017,474(4):471-492.
|
[14] |
ZHU H Y, RIELY B K, BURNS N J, ANÉ J M. Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses. Genetics, 2006,172(4):2491-2499.
|
[15] |
BROTMAN Y, LANDAU U, CUADROS-INOSTROZA Á, TOHGE T, TAKAYUKI T, FERNIE A R, CHET I, VITERBO A, WILLMITZER L. Trichoderma-plant root colonization: Escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathogens, 2013,9(3):e1003221.
|
[16] |
CAO Y R, HALANE M K, GASSMANN W, STACEY G. The role of plant innate immunity in the legume-rhizobium symbiosis. Annual Review of Plant Biology, 2017,68:535-561.
|
[17] |
HAO K, WANG F, NONG X Q, MCNEILL M R, LIU S F, WANG G J, CAO G C, ZHANG Z H. Response of peanut Arachis hypogaea roots to the presence of beneficial and pathogenic fungi by transcriptome analysis. Scientific Reports, 2017,7(1):964.
|
[18] |
MICHÉ L, BALANDREAU J. Effects of rice seed surface sterilization with hypochlorite on inoculated Burkholderia vietnamiensis. Applied and Environmental Microbiology, 2001,67(7):3046-3052.
|
[19] |
PFAFFL M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 2001,29(9):e45.
|
[20] |
KAPTEYN J C, HOYER L L, HECHT J E, MÜLLER W H, ANDEL A, VERKLEIJ A J, MAKAROW M, VAN DEN ENDE H, KLIS F M. The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Molecular Microbiology, 2000,35(3):601-611.
|
[21] |
RICHARD M L, PLAINE A. Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans. Eukaryotic Cell, 2007,6(2):119-133.
|
[22] |
KULKARNI R D, KELKAR H S, DEAN R A. An eight-cysteine- containing CFEM domain unique to a group of fungal membrane proteins. Trends in Biochemical Sciences, 2003,28(3):118-121.
|
[23] |
张丽勍, 段可, 邹小花, 何成勇, 高清华. 草莓胶孢炭疽菌CFEM候选效应子的生物信息学鉴定及其侵染过程中的转录分析. 植物保护, 2017,43(5):43-51.
|
|
ZHANG L Q, DUAN K, ZOU X H, HE C Y, GAO Q H. Bioinformatic identification and transcriptional analysis of Colletotrichum gloeosporioides candidate CFEM effector proteins. Plant Protection, 2017,43(5):43-51. (in Chinese)
|
[24] |
DEZWAAN T M, CARROLL A M, VALENT B, SWEIGARD J A. Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. The Plant Cell, 1999,11(10):2013-2030.
|
[25] |
DESAKI Y, KOHARI M, SHIBUYA N, KAKU H. MAMP-triggered plant immunity mediated by the LysM-receptor kinase CERK1. Journal of General Plant Pathology, 2019,85:1-11.
|
[26] |
WANG C, WANG G, ZHANG C, ZHU P K, DAI H L, YU N, HE Z H, XU L, WANG E. OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK cascade in rice. Molecular Plant, 2017,10(4):619-633.
|
[27] |
YAMADA K, YAMAGUCHI K, YOSHIMURA S, TERAUCHI A, KAWASAKI T. Conservation of chitin-induced MAPK signaling pathways in rice and Arabidopsis. Plant and Cell Physiology, 2017,58(6):993-1002.
|
[28] |
OSAKABE Y, MARUYAMA K, SEKI M, SATOU M, SHINOZAKI K, YAMAGUCHI-SHINOZAKIA K. Leucine-rich repeat receptor- like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. The Plant Cell, 2005,17(4):1105-1119.
|
[29] |
OSAKABE Y, MIZUNO S, TANAKA H, MARUYAMA K, OSAKABE K, TODAKA D, FUJITA Y, KOBAYASHI M, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. The Journal of Biological Chemistry, 2010,285(12):9190-9201.
|
[30] |
MENG X, ZHANG S. MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology, 2013,51:245-266.
|
[31] |
YU X, FENG B M, HE P, SHAN L. From chaos to harmony: Responses and signaling upon microbial pattern recognition. Annual Review of Phytopathology, 2017,55:109-137.
|
[32] |
COUTO D, ZIPFEL C. Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology, 2016,16(9):537-552.
|
[33] |
武志刚, 武舒佳, 王迎春, 郑琳琳. 植物中钙依赖蛋白激酶(CDPK)的研究进展. 草业学报, 2018,27(1):204-214.
|
|
WU Z G, WU S J, WANG Y C, ZHENG L L. Advances in studies of calcium-dependent protein kinase (CDPK) in plants. Acta Prataculturae Sinica, 2018,27(1):204-214. (in Chinese)
|
[34] |
LIU J Z, HORSTMAN H D, BRAUN E, GRAHAM M A, ZHANG C Q, NAVARRE D, QIU W L, LEE Y, NETTLETON D, HILL J H, WHITHAM S A. Soybean homologs of MPK4 negatively regulate defense responses and positively regulate growth and development. Plant Physiology, 2011,157(3):1363-1378.
|
[35] |
GLYAN’KO A K, ISCHENKO A A. Immunity of a leguminous plant infected by nodular bacteria Rhizobium spp. F. Applied Biochemistry and Microbiology, 2017,53(2):140-148.
|
[36] |
LIANG Y, CAO Y, TANAKA K, THIBIVILLIERS S, WAN J, CHOI J, KANG C, QIU J, STACEY G. Nonlegumes respond to rhizobial nod factors by suppressing the innate immune response. Science, 2013,341(6152):1384-1387.
|
[37] |
TELLSTRM V, USADEL B, THIMM O, STITT M, KÜSTER H, KARSTEN H, NIEHAUS K. The lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula. Plant Physiology, 2007,143(2):825-837.
|