中国农业科学 ›› 2021, Vol. 54 ›› Issue (1): 34-45.doi: 10.3864/j.issn.0578-1752.2021.01.003
收稿日期:
2020-05-21
接受日期:
2020-07-06
出版日期:
2021-01-01
发布日期:
2021-01-13
通讯作者:
吴列洪
作者简介:
沈升法,E-mail: 基金资助:
SHEN ShengFa(),XIANG Chao,WU LieHong(
),LI Bing,LUO ZhiGao
Received:
2020-05-21
Accepted:
2020-07-06
Online:
2021-01-01
Published:
2021-01-13
Contact:
LieHong WU
摘要:
【目的】可溶性糖含量是甘薯块根食用品质和加工性能的重要指标,研究可溶性糖组分特征及其与食用品质的关系,有助于了解块根可溶性糖组分在加工中的变化及其对食味的影响,为甘薯鲜食与加工的品种选择、专用品种选育和种质资源利用提供依据。【方法】采用高效液相色谱蒸发光散射检测器法(HPLC-ELSD)测定102份甘薯种质资源的生薯和蒸熟薯的可溶性糖组分含量,对不同干物率类型的块根可溶性糖组分特征进行分析,并用相关性和逐步线性回归分析可溶性糖组分与食味的关系及其对食味的贡献。【结果】甘薯的生薯和熟薯均含有果糖、葡萄糖、蔗糖、麦芽糖4种可溶性糖。在生薯中,蔗糖含量最高,平均含量为25.79 mg·(g·FW)-1,占生薯可溶性糖的45.31%;果糖和葡萄糖含量相近,关系密切,果糖含量(y)和葡萄糖含量(x)的拟合方程为y=0.807x+1.275;麦芽糖含量最低,平均含量为6.79 mg·(g·FW)-1,仅占生薯可溶性糖的11.92%。生薯可溶性糖含量高低主要由果糖和葡萄糖含量决定,通常情况下,低干物率品种具有更高的生薯可溶性糖和果糖含量,生化甜度更好。在蒸熟过程中块根中可溶性糖含量变化主要在于产生了大量麦芽糖,麦芽糖含量从生薯的0.96—24.67 mg·(g·FW)-1提高至14.80—136.16 mg·(g·FW)-1。熟薯可溶性糖含量高低是由麦芽糖含量决定的,中、高干物率类型具有更高的熟薯可溶性糖和麦芽糖含量。甘薯块根食味增量主要来源于蒸熟过程中产生的可溶性糖;麦芽糖、果糖、蔗糖是甘薯块根食味的重要影响因子;麦芽糖对食味增量的贡献率近50%,对香味和质地的作用尤为突出;果糖对黏度的贡献最大,而蔗糖对质地的贡献优于果糖。【结论】生薯可溶性糖和果糖含量是反映甘薯生薯甜度的重要指标,熟薯可溶性糖、麦芽糖含量是反映甘薯食味的重要指标。麦芽糖、果糖、蔗糖是影响甘薯块根食用品质及加工性能的重要可溶性糖组分。筛选出甘薯块根可溶性糖特异种质11份。
沈升法,项超,吴列洪,李兵,罗志高. 甘薯块根可溶性糖组分特征及其与食味的关联分析[J]. 中国农业科学, 2021, 54(1): 34-45.
SHEN ShengFa,XIANG Chao,WU LieHong,LI Bing,LUO ZhiGao. Analysis on the Characteristics of Soluble Sugar Components in Sweetpotato Storage Root and Its Relationship with Taste[J]. Scientia Agricultura Sinica, 2021, 54(1): 34-45.
表1
不同干物率类型的生薯和熟薯可溶性糖组分含量"
类型 Type | 项目 Item | 生薯Raw (mg·(g·FW)-1) | 熟薯Steamed (mg·(g·FW)-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fru | Glu | Suc | Mal | Sol | Fru | Glu | Suc | Mal | Sol | ||
试验群体 Test group | 最小值Min | 1.82 | 1.58 | 6.49 | 0.92 | 34.27 | 1.88 | 1.09 | 7.24 | 14.80 | 56.70 |
最大值Max | 26.05 | 30.46 | 59.21 | 24.67 | 82.99 | 25.14 | 27.09 | 60.23 | 136.16 | 172.95 | |
平均值Mean | 11.58 | 12.76 | 25.79 | 6.79 | 56.91 | 10.09 | 10.75 | 26.38 | 63.85 | 111.07 | |
变异系数CV(%) | 50.46 | 55.35 | 37.93 | 61.08 | 15.50 | 53.99 | 57.73 | 38.36 | 43.80 | 21.92 | |
比例Proportion (%) | 20.34 | 22.43 | 45.31 | 11.92 | 100.00 | 9.08 | 9.68 | 23.75 | 57.49 | 100.00 | |
低干物率 Low dry matter content | 最小值Min | 9.75 | 10.05 | 7.90 | 0.92 | 45.18 | 8.30 | 8.35 | 8.35 | 14.80 | 56.70 |
最大值Max | 26.05 | 30.46 | 59.21 | 10.13 | 82.99 | 25.14 | 27.09 | 60.23 | 82.03 | 138.44 | |
平均值Mean | 16.86 | 18.63 | 23.17 | 4.00 | 62.67 | 14.87 | 15.79 | 24.08 | 46.35 | 101.08 | |
变异系数CV(%) | 23.87 | 28.01 | 44.81 | 53.85 | 11.57 | 29.48 | 31.49 | 44.51 | 36.34 | 16.55 | |
比例Proportion (%) | 26.91 | 29.73 | 36.98 | 6.38 | 100.00 | 14.71 | 15.62 | 23.82 | 45.85 | 100.00 | |
中干物率 Medium dry matter content | 最小值Min | 1.82 | 1.58 | 12.41 | 3.00 | 38.55 | 1.92 | 1.42 | 11.64 | 28.15 | 65.33 |
最大值Max | 19.60 | 26.28 | 41.05 | 14.12 | 71.26 | 17.78 | 21.43 | 44.68 | 121.62 | 162.76 | |
平均值Mean | 11.29 | 12.85 | 25.29 | 7.26 | 56.69 | 9.82 | 10.91 | 25.56 | 70.70 | 117.00 | |
变异系数CV(%) | 38.63 | 44.42 | 29.53 | 45.51 | 13.61 | 39.83 | 44.94 | 29.63 | 37.49 | 21.43 | |
比例Proportion (%) | 19.92 | 22.66 | 44.61 | 12.81 | 100.00 | 8.39 | 9.33 | 21.85 | 60.43 | 100.00 | |
高干物率 High dry matter content | 最小值Min | 2.33 | 2.33 | 6.49 | 2.48 | 34.27 | 1.88 | 1.09 | 7.24 | 18.93 | 66.53 |
最大值Max | 15.32 | 21.22 | 43.34 | 24.67 | 64.99 | 12.53 | 16.86 | 47.21 | 136.16 | 172.95 | |
平均值Mean | 6.75 | 7.14 | 28.60 | 9.11 | 51.60 | 5.73 | 5.87 | 29.10 | 75.88 | 116.59 | |
变异系数CV(%) | 49.04 | 59.71 | 34.12 | 49.29 | 14.21 | 49.53 | 61.58 | 35.46 | 38.18 | 22.99 | |
比例Proportion (%) | 13.08 | 13.83 | 55.42 | 17.66 | 100.00 | 4.91 | 5.04 | 24.96 | 65.09 | 100.00 |
表2
蒸熟后可溶性糖组分含量的增量"
组分 Component | 增量Increment (mg·(g·FW)-1) | 正向增量Positive increment | |||||
---|---|---|---|---|---|---|---|
最小值 Min | 最大值 Max | 平均值 Mean | 含量占比 Proportion of content (%) | 品种数 No. of variety | 品种数占比 Proportion of variety No. (%) | ||
Fru | -4.95 | 1.86 | -1.46 | -1.40 | 15 | 14.71 | |
Glu | -6.42 | 2.04 | -1.97 | -1.90 | 8 | 7.84 | |
Suc | -6.03 | 8.80 | 0.64 | 0.51 | 60 | 58.82 | |
Mal | 5.21 | 122.41 | 57.51 | 49.41 | 102 | 100.00 | |
Sol | -3.46 | 123.94 | 54.73 | 46.62 | 101 | 99.02 |
表3
可溶性糖组分、干物率、食味之间的相关系数"
品质性状 Quality trait | 生薯Raw | 熟薯Steamed | 干物率 Dry matter content | 食味Taste | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fru | Glu | Suc | Mal | Sol | Bcs | Fru | Glu | Suc | Mal | Sol | Bcs | Swe | Vis | Tex | Fra | Fib | ||||
生薯 Raw | Glu | 0.976** | ||||||||||||||||||
Suc | -0.624** | -0.623** | ||||||||||||||||||
Mal | -0.517** | -0.507** | 0.155 | |||||||||||||||||
Sol | 0.509** | 0.518** | 0.269** | -0.107 | ||||||||||||||||
Bcs | 0.742** | 0.732** | 0.049 | -0.437** | 0.927** | |||||||||||||||
熟薯 Steamed | Fru | 0.974** | 0.947** | -0.592** | -0.504** | 0.509** | 0.734** | |||||||||||||
Glu | 0.960** | 0.978** | -0.607** | -0.510** | 0.507** | 0.722** | 0.975** | |||||||||||||
Suc | -0.584** | -0.589** | 0.953** | 0.188 | 0.287** | 0.065* | -0.535** | -0.560** | ||||||||||||
Mal | -0.393** | -0.353** | -0.099 | 0.540** | -0.399** | -0.538** | -0.394** | -0.351** | -0.097 | |||||||||||
Sol | -0.232* | -0.189 | -0.005 | 0.456** | -0.096 | -0.243* | -0.203* | -0.162 | 0.042 | 0.931** | ||||||||||
Bcs | 0.346** | 0.362** | 0.037 | 0.017 | 0.568** | 0.517** | 0.422** | 0.426** | 0.154 | 0.331** | 0.647** | |||||||||
干物率 Dry matter content | -0.810** | -0.774** | 0.280** | 0.599** | -0.565** | -0.769** | -0.787** | -0.764** | 0.265** | 0.541** | 0.361** | -0.267** | ||||||||
食味 Taste | Swe | -0.080 | -0.053 | 0.170 | 0.308** | 0.238* | 0.093 | -0.070 | -0.039 | 0.135 | 0.563** | 0.677** | 0.567** | 0.101 | ||||||
Vis | 0.317** | 0.328** | -0.177 | -0.037 | 0.259** | 0.279** | 0.301** | 0.332** | -0.235* | 0.392** | 0.504** | 0.541** | -0.274** | 0.684** | ||||||
Tex | -0.235* | -0.213* | 0.187 | 0.366** | 0.052 | -0.100 | -0.226* | -0.197* | 0.144 | 0.643** | 0.698** | 0.445** | 0.251* | 0.827** | 0.673** | |||||
Fra | -0.141 | -0.108 | 0.084 | 0.298** | 0.053 | -0.065 | -0.128 | -0.092 | 0.045 | 0.649** | 0.712** | 0.486** | 0.193 | 0.875** | 0.654** | 0.817 ** | ||||
Fib | 0.138 | 0.131 | -0.078 | -0.018 | 0.101 | 0.115 | 0.143 | 0.130 | -0.073 | 0.235* | 0.304** | 0.327** | -0.044 | 0.464** | 0.380** | 0.416** | 0.537** | |||
Tts | -0.014 | 0.008 | 0.077 | 0.247* | 0.199* | 0.091 | -0.014 | 0.017 | 0.029 | 0.604** | 0.707** | 0.576** | 0.060 | 0.957** | 0.785** | 0.855** | 0.917** | 0.543** |
表4
不同干物率类型中干物率与可溶性糖及食味的相关系数"
类型 | 熟薯Steamed | 食味Taste | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Type | Fru | Glu | Suc | Mal | Sol | Swe | Vis | Tex | Fra | Tts |
低干物率和中干物率 | -0.661** | -0.617** | 0.23 | 0.626** | 0.496** | 0.306* | 0.231 | 0.557** | 0.429** | 0.324** |
Low and medium dry matter content | ||||||||||
高干物率 High dry matter content | -0.372* | -0.385* | 0.019 | 0.277 | 0.216 | -0.006 | -0.203 | -0.111 | -0.03 | -0.025 |
表5
蒸熟后可溶性糖增量对食味的贡献率"
食味指标 Taste index | 最优标准化回归方程 Optimal standardized regression equation | 偏相关系数Partial correlation coefficient | 贡献率Contribution rate(%) | ||
---|---|---|---|---|---|
x1 | x2 | x1 | x2 | ||
Tts | y = 76.817+1.567x1+2.418x2 | 0.548** | 0.707** | 39.32 | 60.68 |
Swe | y = 76.606+1.418x1+2.016x2 | 0.564** | 0.692** | 41.29 | 58.71 |
Vis | y = 75.762+2.444x1+3.000x2 | 0.459** | 0.531** | 44.89 | 55.11 |
Tex | y = 77.319+1.240x1+2.599x2 | 0.445** | 0.718** | 32.30 | 67.70 |
Fra | y = 77.378+1.134x1+2.341x2 | 0.423** | 0.689** | 32.63 | 67.37 |
表6
熟薯可溶性糖组分对食味的贡献率"
食味指标 Taste index | 最优标准化回归方程 Optimal standardized regression equation | 偏相关系数Partial correlation coefficient | 贡献率Contribution rate (%) | ||||
---|---|---|---|---|---|---|---|
Fru (x1) | Suc (x3) | Mal (x4) | Fru (x1) | Suc (x3) | Mal (x4) | ||
Tts | y = 77.053+1.676x1+1.206x3+2.644x4 | 0.494** | 0.398** | 0.716** | 30.33 | 21.82 | 47.85 |
Swe | y = 76.796+1.276x1+1.161x3+2.118x4 | 0.432** | 0.419** | 0.672** | 28.01 | 25.49 | 46.50 |
Vis | y = 76.198+3.961x1+1.259x3+3.818x4 | 0.626** | 0.261** | 0.662** | 43.83 | 13.93 | 42.24 |
Tex | y = 77.527+1.192x1+1.359x3+2.762x4 | 0.374** | 0.438** | 0.730** | 22.44 | 25.58 | 51.99 |
Fra | y = 77.548+1.055x1+0.893x3+2.436x4 | 0.330** | 0.300** | 0.678** | 24.06 | 20.37 | 55.57 |
表7
11份特异种质的主要可溶性糖组分含量和食味"
种质名称 Germplasm name | 干物率 Dry matter content (%) | 生薯Raw | 熟薯Steamed | 食味 Taste | |||||
---|---|---|---|---|---|---|---|---|---|
Fru (mg·(g·FW)-1) | Suc (mg·(g·FW)-1) | Sol (mg·(g·FW)-1) | Bcs | Mal (mg·(g·FW)-1) | Sol (mg·(g·FW)-1) | Bcs | |||
雪梨番薯 Xuelifanshu | 19.24 | 26.05 | 12.13 | 68.63 | 78.71 | 28.17 | 93.04 | 85.46 | 75.3 |
南瓜番薯 Nanguafanshu | 21.02 | 24.31 | 17.57 | 68.70 | 78.44 | 16.63 | 86.77 | 87.35 | 77.3 |
浙薯81 Zheshu 81 | 22.81 | 10.04 | 59.21 | 82.99 | 85.55 | 25.68 | 103.45 | 90.21 | 76.7 |
蜜东 Midong | 27.77 | 11.87 | 17.80 | 47.40 | 48.95 | 121.62 | 157.55 | 81.64 | 81.3 |
金瓜番薯 Jinguafanshu | 26.45 | 12.52 | 33.42 | 67.18 | 67.86 | 82.46 | 146.50 | 98.04 | 81.7 |
心香 Xinxiang | 31.56 | 11.15 | 24.30 | 53.08 | 54.52 | 97.76 | 144.83 | 85.51 | 83.3 |
梓桐黄心 Zitonghuangxin | 35.25 | 8.68 | 15.48 | 41.23 | 39.90 | 129.71 | 160.32 | 79.46 | 83.0 |
浙薯13 Zheshu 13 | 38.42 | 4.01 | 27.43 | 49.01 | 41.93 | 136.16 | 172.95 | 86.43 | 82.7 |
杭州番薯 Hangzhoufanshu | 34.54 | 4.09 | 43.34 | 64.52 | 57.66 | 18.93 | 70.81 | 60.07 | 72.0 |
苋菜番薯 Xiancaifanshu | 31.30 | 4.89 | 40.90 | 56.99 | 55.22 | 21.76 | 66.53 | 54.07 | 73.3 |
武义白心 Wuyibaixin | 30.52 | 11.29 | 6.49 | 34.72 | 35.38 | 64.65 | 87.00 | 49.31 | 72.3 |
[1] | ZHU F, XIE Q. Structure of New Zealand sweetpotato starch. Carbohydrate Polymers, 2018(188):181-187. |
[2] | SHIKUKU K M, OKELLO J J, WAMBUGU S, SINDI K, LOW J W, MCEWAN M. Nutrition and food security impacts of quality seeds of biofortified orange-fleshed sweetpotato: Quasi-experimental evidence from Tanzania. World Development, 2019,124:e104646. |
[3] | LOW J W, THIELE G. Understanding innovation: The development and scaling of orange-fleshed sweetpotato in major African food systems. Agricultural Systems, 2020,179:e102770. |
[4] |
BECHOFF A, DUFOUR D, DHUIQUE-MAYER C, MAROUAE C, REYNES M, WESTBY A. Effect of hot air, solar and sun drying treatments on provitamin A retention in orange-flfleshed sweetpotato. Journal of Food Engineering, 2019,92(2):164-171.
doi: 10.1016/j.jfoodeng.2008.10.034 |
[5] |
HUMMEL M, TALSMA E F, DER HONING A V, GAMA A C, VAN VUGT D, BROUWER I D, SPILLANE C, MARIJKE H, ELISE T, ATI V H, ARTHUR C G, DANIEL V V, INGE D B, CHARLES S. Sensory and cultural acceptability tradeoffs with nutritional content of biofortified orange-fleshed sweetpotato varieties among households with children in Malawi. PLoS ONE, 2018,13(10):e0204754.
doi: 10.1371/journal.pone.0204754 pmid: 30335772 |
[6] |
KATAYAMA K, KOBAYSHI A, SAKAI T, KURANOUCHI T, Kai Y. Recent progress in sweetpotato breeding and cultivars for diverse applications in Japan. Breeding Science, 2017,67(1):3-14.
doi: 10.1270/jsbbs.16129 pmid: 28465663 |
[7] |
HUANG A S, TANUDJAJA L, LUM D. Content of Alpha-, Beta-carotene and dietary fiber in 18 sweetpotato varieties grown in Hawaii. Journal of Food Composition and Analysis, 1999,12(2):147-151.
doi: 10.1006/jfca.1999.0819 |
[8] |
沈升法, 吴列洪, 李兵. 紫肉甘薯部分营养成分与食味的关联分析. 中国农业科学, 2015,48(3):555-564.
doi: 10.3864/j.issn.0578-1752.2015.03.15 |
SHEN S F, WU L H, LI B. Association analysis between part nutritional compositions and taste of purple-fleshed sweetpotato. Scientia Agricultura Sinica, 2015,48(3):555-564. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.03.15 |
|
[9] |
NABUBUYA A, NAMUTEBI A, BYARUHANGA Y B, NARVHUS J, WICKLUND T. Influence of development, postharvest handling, and storage conditions on the carbohydrate components of sweetpotato (Ipomea batatas Lam.) roots. Food Science & Nutrition, 2017,5(6):1088-1097.
doi: 10.1002/fsn3.496 pmid: 29188036 |
[10] |
WEI S Y, LU G Q, CAO H P. Effects of cooking methods on starch and sugar composition of sweetpotato storage roots. PLoS ONE, 2017,12(8):e0182604.
doi: 10.1371/journal.pone.0182604 pmid: 28827808 |
[11] | 吴列洪, 沈升法, 李兵. 甘薯甜度与薯块蒸煮前后糖分的相关性研究. 中国粮油学报, 2012,27(9):25-28. |
WU L H, SHEN S F, LI B. Study on the correlation between sweetness and sugar of sweet potato before and after steaming. Journal of the Chinese Cereals and Oils Association, 2012,27(9):25-28. (in Chinese) | |
[12] |
PICHA D H. HPLC determination of sugars in raw and baked sweetpotatoes. Journal of Food Science, 1985,50(4):1189-1210.
doi: 10.1111/jfds.1985.50.issue-4 |
[13] |
MORRISON T A, PRESSEY R, KAYS S J. Changes in alpha- and beta-amylase during storage of sweetpotato lines with varying starch hydrolysis potential. Journal of the American Society for Horticultural Science, 1993,118(2):236-242.
doi: 10.21273/JASHS.118.2.236 |
[14] |
LA BONTE D R, PICHA D H, JOHNSON H A. Carbohydrate-related changes in sweetpotato storage roots during development. Journal of the American Society for Horticultural Science, 2000,125(2):200-204.
doi: 10.21273/JASHS.125.2.200 |
[15] |
HUANG Y H, PICHA D H, KILIKI A W, JOHNSON C E. Changes in invertase activities and reducing sugar content in sweetpotato stored at different temperatures. Journal of Agricultural and Food Chemistry, 1999,47(12):4927-4931.
doi: 10.1021/jf9902191 pmid: 10606553 |
[16] |
HUANG C L, LIAO W C, CHAN C F, LAI Y C. Storage performance of Taiwanese sweet potato cultivars. Journal of Food Science and Technology, 2014,51(12):4019-4025.
doi: 10.1007/s13197-013-0960-8 pmid: 25477675 |
[17] |
YOOYONGWECH S, SAMPHUMPHUNG T, TISARAM R, THEERAWJTAYA C, CHAUM S. Physiological, morphological changes and storage root yield of sweetpotato [Ipomoea batatas (L.) Lam.] under PEG-induced water stress. Notulae Botanicae Horti Agrobotanici Cluj-napoca, 2017,45(1):164-171.
doi: 10.15835/nbha45110651 |
[18] |
LI X, YANG H Q, LU G Q. Low-temperature conditioning combined with cold storage inducing rapid sweetening of sweetpotato tuberous roots (Ipomoea batatas (L.) Lam) while inhibiting chilling injury. Postharvest Biology and Technology, 2018,142:1-9.
doi: 10.1016/j.postharvbio.2018.04.002 |
[19] | DE ARAUJOA N O, VERASB M L, SANTOSA M N, DE ARAUJOB F F, TELLOB J P, FINGER F L. Sucrose degradation pathways in old-induced sweetening and its impact on the non- enzymatic darkening in sweet potato root. Food Chemistry, 2020,312:e125904. |
[20] | GRABOWSKI J A, TRUONG V D, DAUBERT C R. Nutritional and rheological characterization of spray dried sweetpotato powder. Food Science and Technology, 2008,41(2):206-216. |
[21] |
LAI Y C, HUANG C L, CHAN C F, LIEN C Y, LIAO W C. Studies of sugar composition and starch morphology of baked sweet potatoes (Ipomoea batatas (L.) Lam). Journal of Food Science and Technology, 2013,50(6):1193-1199.
doi: 10.1007/s13197-011-0453-6 pmid: 24426034 |
[22] | 张文婷, 陆秋艳. 亚热带水果中糖组分的测定及分析. 营养学报, 2019,41(3):308-312. |
ZHANG W T, LU Q Y. Determination and analysis of sugars in subtropical fruits. Acta Nutrimenta Sinica, 2019,41(3):308-312. (in Chinese) | |
[23] |
CHAN C F, CHIANG C M, LAI Y C, HUANG C L, KAO S C, LIAO W C. Changes in sugar composition during baking and their effects on sensory attributes of baked sweet potatoes. Journal of Food Science and Technology, 2014,51(12):4072-4077.
doi: 10.1007/s13197-012-0900-z pmid: 25477683 |
[24] | 占雷雷, 朱国鹏, 刘永华. 4种蔗糖分解酶在甘薯块根品质形成中的作用. 热带作物学报, 2019,40(9):1723-1728. |
ZHAN L L, ZHU G P, LIU Y H. Differential roles of four sucrose-degrading enzymes in the formation of qualities of the storage roots of sweetpotato. Chinese Journal of Tropical Crops, 2019,40(9):1723-1728. (in Chinese) | |
[25] |
REES D, OIRSCHOT Q, AKED J. The role of carbohydrates in wound-healing of sweetpotato roots at low humidity. Postharvest Biology and Technology, 2008,50(1):79-86.
doi: 10.1016/j.postharvbio.2008.03.019 |
[26] | YAN H, LI Q, ZHANG Y G, WANG X, LIU Y J, KOU M, TANG W, MA D F. Effects of soil environment on traits of purple-fleshed sweetpotato. Agricultrual Science & Technology, 2017,18(3):516-520, 523. |
[27] | 陈金斌. HPLC- ELSD法检测蜂蜜饮料中4种可溶性糖含量. 食品研究与开发, 2016,37(24):140-143. |
CHEN J B. Determination of 4 kinds soluble sugar in honey drink by HPLC-ELSD. Food Research and Development, 2016,37(24):140-143. (in Chinese) | |
[28] | 张英, 石雪萍, 张卫明. HPLC-ELSD法与 HPLC-RID法检测蜂蜜中糖分的比较. 中国野生植物资源, 2009,28(1):43-47. |
ZHANG Y, SHI X P, ZHANG W M. Comparison of HPLC-ELSD and HPLC-RID methods in detecting the sugar of honey. Chinese Wild Plant Resources, 2009,28(1):43-47. (in Chinese) | |
[29] | 张娟, 于有伟, 张丽. 加工方法及提取因素对甘薯中可溶性糖含量影响的研究. 食品工业科技, 2013,34(21):254-258, 261. |
ZHANG J, YU Y W, ZHANG L. The influential research of processing method and extraction factors on the soluble sugar content of sweet potato. Science and Technology of Food Industry, 2013,34(21):254-258, 261. (in Chinese) | |
[30] | 卞科, 刘孝沾. 甘薯中可溶性糖的 HPLC 法测定及其在加工中的变化研究. 河南工业大学学报(自然科学版), 2012,33(1):1-5. |
BIAN K, LIU X Z. Determination of soluble sugars in sweet potato by HPLC and its changes during processing. Journal of Henan University of Technology (Natural Science Edition), 2012,33(1):1-5. (in Chinese) | |
[31] |
SATO A, TRUONG V D, JOHANNINGSMEIER S D, REYNOLDS R, PECOTA K V, YENCHO G C. Chemical constituents of sweetpotato genotypes in relation to textural characteristics of processed French fries. Journal of Food Science, 2018,83(1):60-73.
doi: 10.1111/1750-3841.13978 pmid: 29178339 |
[32] |
LEBOT V. Rapid quantitative determination of maltose and total sugars in sweet potato (Ipomoea batatas L. [Lam.]) varieties using HPTLC. Journal of Food Science and Technology, 2017,54(3):718-726.
doi: 10.1007/s13197-017-2510-2 pmid: 28298685 |
[33] |
SUN J B, SEVERSON R F, KAYS S J. Effect of heating temperature and microwave pretreatment on the formation of sugars and volatiles in Jewel sweetpotato. Journal of Food Quality, 1994,17(6):447-456.
doi: 10.1111/jfq.1994.17.issue-6 |
[34] | 韩磊, 唐金鑫, 吴亚飞, 王宗濂. 含糖类物料的喷雾干燥. 林产化学与工业, 2006,26(2):117-121. |
HAN L, TANG J X, WU Y F, WANG Z L. Spray drying of substances containing sugars. Chemistry and Industry of Forest Products, 2006,26(2):117-121. (in Chinese) | |
[35] | 周张涛, 袁博, 王志荣, 田华, 何东平. 不同还原糖对浓香葵花籽油风味的影响. 食品工业, 2019,40(7):20-23. |
ZHOU Z T, YUAN B, WANG Z R, TIAN H, HE D P. Effect of different reducing sugars on mail lard reaction flavor of fragrant sunflower seed oil and process optimization. The Food Industry, 2019,40(7):20-23. (in Chinese) | |
[36] | 刘俊辉, 张建勋, 宗永立. 食品香味释放. 化学通报, 2010,23(12):1099-1105. |
LIU J H, ZHANG J X, ZONG Y L. Progress of flavor release from foods. Chemistry Online, 2010,23(12):1099-1105. (in Chinese) |
[1] | 朱大伟,章林平,陈铭学,方长云,于永红,郑小龙,邵雅芳. 中国优质稻品种品质及食味感官评分值的特征[J]. 中国农业科学, 2022, 55(7): 1271-1283. |
[2] | 宋松泉,刘军,唐翠芳,程红焱,王伟青,张琪,张文虎,高家东. 种子耐脱水性的生理及分子机制研究进展[J]. 中国农业科学, 2022, 55(6): 1047-1063. |
[3] | 王秀秀,邢爱双,杨茹,何守朴,贾银华,潘兆娥,王立如,杜雄明,宋宪亮. 陆地棉种质资源表型性状综合评价[J]. 中国农业科学, 2022, 55(6): 1082-1094. |
[4] | 相玉婷, 王晓龙, 胡新中, 任长忠, 郭来春, 李璐. 燕麦品种间脂肪酶活性差异及低脂肪酶优质品种的预测[J]. 中国农业科学, 2022, 55(21): 4104-4117. |
[5] | 崔鹏,赵逸人,姚志鹏,庞林江,陆国权. 低温对甘薯淀粉理化特性及代谢关键基因表达量的影响[J]. 中国农业科学, 2022, 55(19): 3831-3840. |
[6] | 刘丰,蒋佳丽,周琴,蔡剑,王笑,黄梅,仲迎鑫,戴廷波,曹卫星,姜东. 美国软麦籽粒品质变化趋势及对我国弱筋小麦标准达标度分析[J]. 中国农业科学, 2022, 55(19): 3723-3737. |
[7] | 万映伶,朱梦婷,刘爱青,金亦佳,刘燕. 中国观赏芍药表型多样性解析与资源评价[J]. 中国农业科学, 2022, 55(18): 3629-3639. |
[8] | 陈学森,王楠,张宗营,毛志泉,尹成苗. 关于果树种质资源与遗传育种若干问题的理解与思考[J]. 中国农业科学, 2022, 55(17): 3395-3410. |
[9] | 杨程,龚桂芝,彭祝春,常珍珍,易璇,洪棋斌. 基于cpInDel标记和cpSSR标记的柑橘属及近缘属植物亲缘关系[J]. 中国农业科学, 2022, 55(16): 3210-3223. |
[10] | 沈志军, 田雨, 蔡志翔, 徐子媛, 严娟, 孙朦, 马瑞娟, 俞明亮. 基于国家果树种质南京桃资源圃的桃褐腐病抗性评价[J]. 中国农业科学, 2022, 55(15): 3018-3028. |
[11] | 郝静,李秀坤,崔顺立,邓洪涛,侯名语,刘盈茹,杨鑫雷,穆国俊,刘立峰. 花生每荚种子数相关性状QTL的定位[J]. 中国农业科学, 2022, 55(13): 2500-2508. |
[12] | 冯俊杰,赵文达,张新全,刘英杰,袁帅,董志晓,熊毅,熊艳丽,凌瑶,马啸. 引种日本多花黑麦草标准品种DUS性状变异分析及应用[J]. 中国农业科学, 2022, 55(12): 2447-2460. |
[13] | 徐晓,任根增,赵欣蕊,常金华,崔江慧. 中国高粱地方品种和育成品种穗部表型性状精准鉴定及综合评价[J]. 中国农业科学, 2022, 55(11): 2092-2108. |
[14] | 范文静,刘明,赵鹏,张强强,吴德祥,郭鹏宇,朱晓亚,靳容,张爱君,唐忠厚. 甘薯苗期耐低氮基因型筛选及不同氮效率类型综合评价[J]. 中国农业科学, 2022, 55(10): 1891-1902. |
[15] | 李博,杨帆,秦琴,钟晓媛,李秋萍,曾玉玲,卢慧,陈勇,王丽,陶有凤,李娟,冯炳亮,任万军,邓飞. 播期对再生稻次适宜区杂交籼稻食味品质的影响[J]. 中国农业科学, 2022, 55(1): 36-50. |
|