中国农业科学 ›› 2019, Vol. 52 ›› Issue (2): 201-214.doi: 10.3864/j.issn.0578-1752.2019.02.002
收稿日期:
2018-07-18
接受日期:
2018-09-07
出版日期:
2019-01-16
发布日期:
2019-01-21
通讯作者:
王赞
作者简介:
张涵,E-mail: 基金资助:
ZHANG Han,WANG XueMin,LIU XiQiang,MA Lin,WEN HongYu,WANG Zan()
Received:
2018-07-18
Accepted:
2018-09-07
Online:
2019-01-16
Published:
2019-01-21
Contact:
Zan WANG
摘要: 【目的】 DELLA蛋白属于GRAS家族,是赤霉素信号转导途径中重要的转录因子,负向调节GA转导途径。克隆获得紫花苜蓿GAI,分析其基因生物信息学特征并预测蛋白结构域。明确紫花苜蓿GAI组织表达特征及不同处理下的表达模式,构建该基因超表达载体并转入紫花苜蓿,以探究DELLA蛋白基因在紫花苜蓿赤霉素(GA)信号转导途径及胁迫条件下的作用机理。【方法】 利用同源克隆的方法,从紫花苜蓿中克隆得到MsGAI。利用生物信息学方法分析该基因的序列特征,使用MEGA7.0对MsGAI蛋白序列及同源序列进行多序列比对,构建同源物种间的系统发育树。利用实时荧光定量PCR检测紫花苜蓿各组织GAI表达量以及在PEG、NaCl、GA、ABA和黑暗处理下,GAI的表达变化。同时对转基因GAI株系表达水平进行分析,选择表达量高、中、低株系(L5、L8、L11)分别进行PEG和NaCl处理,分析GAI的表达变化。以pBI121为基础载体,采用双酶切-连接的方法构建植物超表达载体35S:MsGAI-gus。将重组载体转入农杆菌GV3101菌株中,以紫花苜蓿叶片为外植体,采用农杆菌介导的愈伤组织转化法转化紫花苜蓿,经PCR检测和GUS组织化学染色,得到转基因阳性苗。【结果】 该基因序列包含有一个1 818 bp的开放阅读框,编码605个氨基酸。生物信息学分析结果显示,MsGAI蛋白具有GRAS家族的典型结构域和保守区,其中包含N端保守结构域DELLA和TVHYNP,C端保守结构域SAW。多序列比对及系统进化树分析表明,该序列与其他物种的DELLA蛋白序列相似度均高达80%以上,将其命名为MsGAI。该基因与蒺藜苜蓿GAI亲缘关系最近,其次与鹰嘴豆、红三叶等双子叶豆科植物亲缘关系较近,与大麦等单子叶植物较远。实时荧光定量PCR分析表明,MsGAI在紫花苜蓿各组织中均有表达,根中的表达量最高。经PEG、NaCl、GA以及ABA处理后,均有明显响应;黑暗处理显著抑制MsGAI的表达。转基因株系经PEG、NaCl处理后,GAI表达量均上调。对构建完善的35S:MsGAI-gus植物超表达载体进行双酶切检测,琼脂糖凝胶电泳显示,条带大小与预期一致。对转基因植株进行GUS组织染色验证,结果表明,阳性植株呈现蓝色,对照组为白色。对超表达载体携带的MsGAI和GUS序列进行PCR检测均呈阳性。【结论】 紫花苜蓿DELLA蛋白基因的克隆和超表达载体构建成功,MsGAI对逆境胁迫有响应。
张涵,王学敏,刘希强,马琳,温红雨,王赞. 紫花苜蓿MsGAI的克隆、表达及遗传转化[J]. 中国农业科学, 2019, 52(2): 201-214.
ZHANG Han,WANG XueMin,LIU XiQiang,MA Lin,WEN HongYu,WANG Zan. Cloning Expression Analysis and Transformation of MsGAI Gene from Medicago sativa L[J]. Scientia Agricultura Sinica, 2019, 52(2): 201-214.
表1
试验中所用引物序列"
引物名称 Primers | 序列 Sequence of primers (5′-3′) | 用途 Application |
---|---|---|
MsGAI | F: AAACTTCAACCCATAAACTC | 基因克隆 Gene cloning |
R: ACTTAAGGGTACCCTGAG | ||
121-MsGAI | F: TGCTCTAGAATGAAGAGAGAACACCA | pBI121载体构建 Vector construction |
R: CGCGGATCCTCACTTGGACTCATTTTG | ||
Ms_Actin | F: CAAAAGATGGCAGATGCTGAGGAT | 内参基因 Internal control |
R: CATGACACCAGTATGACGAGGTCG | ||
QGAI | F: CCACCACCTTAACAGCAGCA | 荧光定量 Real-time PCR |
R: GAGCACTACCCATAACCATCTC | ||
M13 | F: GTAAAACGACGGCCAGT | 亚克隆引物 The primers for subcloning |
R: CAGGAAACAGCTATGAC | ||
35s | F: GGTGGCTCCTACAAATGCCA | pBI121载体构建 Vector construction |
R: GAAACGCAGCACGATACGC | ||
Promoter | F: GGTACACGCTAAGACGCTAC | 启动子克隆 Promoter cloning |
R: TTGCTGCTGTTAAGGTGG |
图3
MsGAI与其他物种同源蛋白氨基酸序列比对 MsGAI:紫花苜蓿Medicago sativa;OsSLR1:水稻Oryza sativa,XP_015631543.1;MtGAI:蒺藜苜蓿Medicago truntula,XP_013460591.1;OsGAI:水稻Oryza sativa,Q7G7J6;CaGAI:鹰嘴豆Cicer arietinum,XP_004503135.1;GhGAI:陆地棉Gossypium hirsutum,XP_016744906.1;ZmDWARF8:玉米Zea mays,NC_024459.2;TaRHT-1:小麦Triticum aestivum,Q9ST59.1;VvGAI:葡萄Vitis vinifera,XP_002266267.1。方框分别表示DELLA域、TVHYNP和SAW域The DELLA domain, TVHYNP and SAW domains are represented in the boxes respectively"
图5
MsGAI蛋白与其他物种GAI蛋白的系统发育树 TpGAI:红三叶Trifolium pratense,PNY03470.1;PsLA:豌豆Pisum sativum,ABI30654.1;CaGAI:鹰嘴豆Cicer arietinum,XP_004503135.1;MsGAI:紫花苜蓿Medicago sativa;MtGAI:蒺藜苜蓿Medicago truntula,XP_013460591.1;GmGAI:大豆Glycine max,XP_003552980.1;VaGAI:赤豆Vigna angularis,XP_017418978.1;PvGAI:菜豆Phaseolus vulgaris,BAF62637.1;VvGAI:葡萄Vitis vinifera,ARR27421.1;SiGAI:芝麻Sesamum indicum,XP_011097451.1;GhGAI:陆地棉Gossypium hirsutum,XP_016744906.1;PpGAI:沙梨Pyrus pyrifolia,ANJ78486.1;PsGAI:李子Prunus salicina, AQQ12221.1; AtRGL1:拟南芥Arabidopsis thaliana,NC_003070.9;AtGAI:拟南芥Arabidopsis thaliana,NC_003070.9;AtRGA:拟南芥Arabidopsis thaliana,NC_003071.7;ZmDWARF8:玉米Zea mays,NC_024459.2;HvSLN1:青稞Hordeum vulgare,Q8W127.1;TaRHT1:小麦Triticum aestivum,Q9ST59.1。节点上的数值表示自举值,标尺上的数字表示遗传距离Numbers at node indicates bootstrap value derived from 1000 replicates. The scale bar indicates genetic distance"
表3
PlantCARE启动子预测结果"
顺式作用元件 Cis-elements | 序列 Sequence (5'-3') | 功能 Function | 数量 No. |
---|---|---|---|
3-AF1 binding site | AAGAGATATTT | 光响应元件 Light responsive element | 1 |
A-box | CCGTCC | 顺式作用调控元件 Cis-acting regulatory element | 2 |
ACE | AAAACGTTTA | 光响应顺式元件 Cis-acting element involved in light responsiveness | 1 |
ARE | TGGTTT | 厌氧诱导必需元件 Cis-acting regulatory element essential for the anaerobic induction | 2 |
ATCT-motif | AATCTAATCT | 参与光响应的保守DNA模块的部分元件 Part of a conserved DNA module involved in light responsiveness | 2 |
BOX-4 | ATTAAT | 参与光反应元件 Part of a conserved DNA module involved in light responsiveness | 3 |
Box-W1 | TTGACC | 真菌诱导子反应元件 Fungal elicitor responsive element | 1 |
CAAT-box | CAAAT | 启动子和增强子区域中常见的顺式作用元件 Common cis-acting element in promoter and enhancer regions | 47 |
CCAAT-box | CAACGG | 结合位点MYBHv1 binding site MYBHv1 | 1 |
CCGTCC-box | CCGTCC | 与分生组织特异性激活相关的顺式调控元件 Cis-acting regulatory element related to meristem specific activation | 2 |
GAG-motif | AGAGAGT | 部分光响应元件 Part of a light responsive element | 1 |
GT1-motif | GGTTAA | 光响应元件 Light responsive element | 1 |
HSE | AAAAAATTTC | 热应激响应顺式元件 Cis-acting element involved in heat stress responsiveness | 1 |
LAMP-element | CCAAAACCA | 部分光响应元件 Part of a light responsive element | 1 |
LTR | CCGAAA | 参与低温响应的元件 Cis-acting element involved in low-temperature responsiveness | 1 |
MBS | TAACTG | 参与干旱诱导MYB结合位点 MYB binding site involved in drought-induction | 1 |
MRE | AACCTAA | 参与光反应的MYB结合位点 MYB binding site involved in light responsiveness | 1 |
Skn-1_motif | GTCAT | 胚乳表达所需的顺式作用调控元件 Cis-acting regulatory element required for endosperm expression | 2 |
TATA-box | ATTATA | 在转录起始的-30附近的核心启动子元件 Core promoter element around -30 of transcription start | 74 |
chs-CMA2a | GCAATTCC | 部分光响应元件 Part of a light responsive element | 1 |
circadian | CAANNNNATC | 参与昼夜节律顺行调控元件 Cis-acting regulatory element involved in circadian control | 3 |
[1] |
陈敏 . 紫花苜蓿赤霉素受体基因MsGID1b的克隆及功能分析. 北京: 中国农业科学院, 2017.
doi: 10.7606/j.issn.1000-4025.2016.11.2159 |
CHEN M . Cloning and functional analysis of gibberellin receptor gene MsGID1b from Medicago sativa L. Beijing: Chinese Academy of Agricultural Sciences, 2017. ( in Chinese)
doi: 10.7606/j.issn.1000-4025.2016.11.2159 |
|
[2] |
BLUMENTHAL J M, RUSSELLE M P . Subsoil nitrate uptake and symbiotic dinitrogen fixation by alfalfa. Agronomy Journal, 1996,88(6):909-915.
doi: 10.2134/agronj1996.00021962003600060010x |
[3] |
RUSSELLE M P, LAMB J F, MONTGOMERY B R, ELSENHEIMER D W, MILLER B S, VANCE C P . Alfalfa rapidly remediates excess inorganic nitrogen at a fertilizer spill site. Journal of Environmental Quality, 2001,30(1):30-36.
doi: 10.2134/jeq2001.30130x pmid: 11215664 |
[4] |
HEDDEN P, PHILLIPS A L . Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science, 2000,5(12):523-530.
doi: 10.1016/S1360-1385(00)01790-8 pmid: 11120474 |
[5] |
SUN T . Gibberellin metabolism, perception and signaling pathways in Arabidopsis. The Arabidopsis Book, 2008: e0103.
doi: 10.1199/tab.0103 pmid: 22303234 |
[6] | 董玉琛, 郑殿升 . 中国小麦遗传资源. 北京:中国农业出版社, 2000: 101-107. |
DONG Y C, ZHENG D S. The Wheat Genetic Resources in China. Beijing:China Agricultural Press, 2000: 101-107. (in Chinese) | |
[7] | AUSTIN R B . Yield of wheat in the United Kingdom: Recent advances and prospects. Crop Science, 1998,39(6):1604-1610. |
[8] |
MONNA L, KITAZAWA N, YOSHINO R, SUZUKI J, MASUDA H, MAEHARA Y . Rice “Green Revolution Gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Research, 2002,9(1):11-17.
doi: 10.1093/dnares/9.1.11 pmid: 11939564 |
[9] |
SASAKI A, ASHIKARI M, UEGUCHI-TANAKA M, ITOH H, NISHIMURA A, SWAPAN D . Green revolution: A mutant gibberellin- synthesis gene in rice. Nature, 2002,416:701-702.
doi: 10.1038/416701a |
[10] | SPIELMEYER W, ELLIS M H, CHANDLER P M . Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Plant Biology, 2002,99(13):9043-9048. |
[11] |
PYSH L D, WYSOCKA-DILLER J W, CAMILLERI C, BOUCHEZ D, BENFEY P N . The GRAS gene family in Arabidopsis: Sequence characterization and basic expression analysis of the SCARECROW- LIKE genes. The Plant Journal, 1999,18(1):111-119.
doi: 10.1046/j.1365-313X.1999.00431.x pmid: 10341448 |
[12] |
PENG J, RICHARDS D E, HARTLEY N M, MURPHY G P, DEVOS K M, FLINTHAM J E . 'Green revolution' genes encode mutant gibberellin response modulators. Nature, 1999,400(6741):256
doi: 10.1038/22307 |
[13] | SILVERSTONE A L, JUNG H S, DILL A, KAWAIDE H, KAMIYA Y, SUN T P . Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. The Plant Cell, 2001,13(7):1555-1566. |
[14] |
GUBLER F, CHANDLER P M, WHITE R G, LLEWELLYN D J, JACOBSEN J V . Gibberellin signaling in barley aleurone cells. Control of SLN1 and GAMYB expression. Plant Physiology, 2002,129(1):191-200.
doi: 10.1104/pp.010918 |
[15] |
ITOH H, UEGUCHI-TANAKA M, SATO Y, ASHIKARI M, MATSUOKA M . The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. The Plant Cell, 2002,14(1):57-70.
doi: 10.1105/tpc.010319 pmid: 11826299 |
[16] |
PENG J, CAROL P, RICHARDS D E, KING K E, COWLING R J, MURPHY G P . The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes & Development, 1997,11(23):3194-3205.
doi: 10.1101/gad.11.23.3194 pmid: 9389651 |
[17] | TYLER L, THOMAS S G, HU J, DILL A, ALONSO J M, ECKER J R . DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiology, 2004,135(2):1008-1019. |
[18] |
LEE S, CHENG H, KING K E, WANG W, HE Y, HUSSAIN A . Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition.Genes & Development, 2002,16(5):646-658.
doi: 10.1101/gad.969002 pmid: 11877383 |
[19] | FU X, SUDHAKAR D, PENG J, RICHARDS D E, CHRISTOU P, HARBERD N P . Expression of Arabidopsis GAI in transgenic rice represses multiple gibberellin responses.The Plant Cell, 2001,13(8):1791-1802. |
[20] |
TALON M, KOORNNEEF M, ZEEVAART J A D . Accumulation of C19-gibberellins in the gibberellin-insensitive dwarf mutant gai of Arabidopsis thaliana(L.). Planta, 1990,182(4):501-505.
doi: 10.1007/BF02341024 |
[21] |
TALON M, KOORNNEEF M, ZEEVAART J A . Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants.Proceedings of the National Academy of Sciences of the USA, 1990,87(20):7983-7987.
doi: 10.1073/pnas.87.20.7983 pmid: 2236013 |
[22] |
WILSON R N, SOMERVILLE C R . Phenotypic suppression of the gibberellin-insensitive mutant gai of Arabidopsis. Plant Physiology, 1995,108(2):495-502.
doi: 10.1104/pp.108.2.475 pmid: 12228487 |
[23] |
FU X, HARBERD N P . Auxin promotes Arabidopsis root growth by modulating gibberellin response.Nature, 2003,421(6924):740.
doi: 10.1038/nature01387 pmid: 12610625 |
[24] | DILL A, SUN T . Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics, 2001,159(2):777-785. |
[25] | FOSTER T, KIRK C, JONES W T . Characterization of the DELLA subfamily in apple (Malus x domestica Borkh.). Tree Genetics & Genomes, 2007,3(3):187-197. |
[26] |
LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 - ΔΔCT method . Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 |
[27] | 李俊 . 东方山羊豆赤霉素受体和水通道蛋白基因功能研究. 北京: 中国农业科学院, 2014. |
LI J . Construction of plant expression Vector of GoGID gene and transformation of Medicago sativa L. Beijing: Chinese Academy of Agricultural Sciences, 2014. ( in Chinese) | |
[28] |
黄先忠, 蒋才富, 廖立力, 傅向东 . 赤霉素作用机理的分子基础与调控模式研究进展. 植物学通报, 2006,23(5):499-510.
doi: 10.3969/j.issn.1674-3466.2006.05.006 |
HUANG X Z, JIANG C F, LIAO L L, FU X D . Progress on molecular foundation of GA biosynthesis pathway and signaling. Chinese Bulletin of Botany, 2006,23(5):499-510. (in Chinese)
doi: 10.3969/j.issn.1674-3466.2006.05.006 |
|
[29] |
FUKUDA A, TANAKA Y . Effects of ABA, auxin, and gibberellin on the expression of genes for vacuolar H+-inorganic pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter in barley . Plant Physiology and Biochemistry, 2006,44(5/6):351-358.
doi: 10.1016/j.plaphy.2006.06.012 |
[30] |
ZENTELLA R, ZHANG Z L, PARK M . Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. The Plant Cell, 2007,19(10):3037-3057.
doi: 10.1105/tpc.107.054999 pmid: 17933900 |
[31] |
DU H, CHANG Y, HUANG F, XIONG L . GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice. Journal of Integrative Plant Biology, 2015,57(11):954-968.
doi: 10.1111/jipb.12313 pmid: 25418692 |
[32] |
DJAKOVIC-PETROVIC T, DE WIT M, VOESENEK L . DELLA protein function in growth responses to canopy signals. The Plant Journal, 2007,51(1):117-126.
doi: 10.1111/j.1365-313X.2007.03122.x pmid: 17488236 |
[33] |
ZENTELLA R, ZHANG Z L, PARK M, THOMAS S G, ENDO A, MURASE K . Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. The Plant Cell, 2007,19(10):3037-3057.
doi: 10.1105/tpc.107.054999 pmid: 17933900 |
[34] |
GÓMEZ-CADENAS A, ZENTELLA R, WALKER-SIMMONS M K, HO T H . Gibberellin/abscisic acid antagonism in barley aleurone cells: Site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. The Plant Cell, 2001,13:667-679.
doi: 10.2307/3871414 |
[1] | 赵海霞,肖欣,董玘鑫,吴花拉,李成磊,吴琦. 苦荞愈伤遗传转化体系的优化及用于FtCHS1的过表达分析[J]. 中国农业科学, 2022, 55(9): 1723-1734. |
[2] | 李世佳,吕紫敬,赵锦. 枣R2R3-MYB亚家族基因鉴定及其在果实发育中的表达分析[J]. 中国农业科学, 2022, 55(6): 1199-1212. |
[3] | 赖春旺, 周小娟, 陈燕, 刘梦雨, 薛晓东, 肖学宸, 林文忠, 赖钟雄, 林玉玲. 龙眼乙烯合成途径基因鉴定及响应ACC处理的分析[J]. 中国农业科学, 2022, 55(3): 558-574. |
[4] | 谢伶俐,韦丁一,章子爽,徐劲松,张学昆,许本波. 甘蓝型油菜发育进程中赤霉素动态变化及其与产量的关系[J]. 中国农业科学, 2022, 55(24): 4793-4807. |
[5] | 苏倩,杜文宣,马琳,夏亚迎,李雪,祁智,庞永珍. 紫花苜蓿MsCIPK2的克隆及功能分析[J]. 中国农业科学, 2022, 55(19): 3697-3709. |
[6] | 张云秀,蒋旭,尉春雪,蒋学乾,卢栋宇,龙瑞才,杨青川,王珍,康俊梅. 紫花苜蓿高迁移率族蛋白基因MsHMG-Y调控花期的功能分析[J]. 中国农业科学, 2022, 55(16): 3082-3092. |
[7] | 宣旭娴,盛子璐,解振强,黄雨晴,巩培杰,张川,郑婷,王晨,房经贵. vvi-miR172s及其靶基因响应赤霉素调控葡萄果实发育的作用分析[J]. 中国农业科学, 2021, 54(6): 1199-1217. |
[8] | 丁茜,赵凯茜,王跃进. 中国野生毛葡萄芪合酶基因表达及对葡萄抗白粉病的影响[J]. 中国农业科学, 2021, 54(2): 310-323. |
[9] | 王文然,解振强,诸葛雅贤,白云赫,管乐,吴伟民,张培安,郑婷,房经贵,王晨. GA3介导miR171s及其靶基因VvSCLs调控葡萄种子发育的作用分析[J]. 中国农业科学, 2021, 54(2): 357-369. |
[10] | 马琳,温红雨,王学敏,高洪文,庞永珍. 紫花苜蓿MsMAX2的克隆及功能研究[J]. 中国农业科学, 2021, 54(19): 4061-4069. |
[11] | 李昕芫, 娄金秀, 刘清源, 胡健, 张英俊. 中国东北和华北地区紫花苜蓿根瘤菌遗传多样性研究[J]. 中国农业科学, 2021, 54(16): 3393-3405. |
[12] | 黄金凤,吕天星,王寻,王颖达,王冬梅,闫忠业,刘志. 苹果LRR-RLK基因家族鉴定和表达分析[J]. 中国农业科学, 2021, 54(14): 3097-3112. |
[13] | 邵晨冰,黄志楠,白雪滢,王云鹏,段伟科. 辣椒HD-Zip基因家族鉴定、系统进化及表达分析[J]. 中国农业科学, 2020, 53(5): 1004-1017. |
[14] | 路保顺,朱永静,张舒婷,吕煜梦,李晓斐,宋雨洋,赖钟雄,林玉玲. 龙眼SPL基因家族全基因组鉴定及表达分析[J]. 中国农业科学, 2020, 53(20): 4259-4270. |
[15] | 康俊梅,张俏燕,蒋旭,王珍,张铁军,龙瑞才,崔会婷,杨青川. 紫花苜蓿MsSQE1的克隆及对皂甙合成的功能分析[J]. 中国农业科学, 2020, 53(2): 247-260. |
|