中国农业科学 ›› 2020, Vol. 53 ›› Issue (14): 2840-2851.doi: 10.3864/j.issn.0578-1752.2020.14.008
张琦(),王淑兰,王浩,刘朋召,王旭敏,张元红,李昊昱,王瑞,王小利(
),李军(
)
收稿日期:
2019-12-23
接受日期:
2020-02-19
出版日期:
2020-07-16
发布日期:
2020-08-10
联系方式:
张琦,E-mail:17835424993@163.com。
基金资助:
ZHANG Qi(),WANG ShuLan,WANG Hao,LIU PengZhao,WANG XuMin,ZHANG YuanHong,LI HaoYu,WANG Rui,WANG XiaoLi(
),LI Jun(
)
Received:
2019-12-23
Accepted:
2020-02-19
Published:
2020-07-16
Online:
2020-08-10
摘要:
【目的】明确减少深松频次对黄土旱塬春玉米田土壤结构与土壤碳库的影响。【方法】2007—2019年在渭北旱塬春玉米田实施不同深松与免耕频次的保护性耕作长期定位试验,以连续深松(S)为对照,设置减少深松频次的免耕与深松结合耕作模式,分别是两年一深松(NS)和三年一深松(NNS)。分析减少深松频次对土壤团聚体、团聚体固碳能力、土壤碳库组成及碳库管理指数的影响。【结果】(1)减少深松频次提高了土壤大土壤团聚体(R0.25)含量,NNS处理下0—40 cm土层机械稳定性团聚体(DR0.25)含量提升3.8%,水稳定性团聚体(WR0.25)含量提升38.9%,NS处理下WR0.25 提升41.8%。NNS处理降低了团聚体破坏率(PAD)和不稳定团粒指数(ELT),平均质量直径(MWD)和几何平均直径(GMD)显著增加13.2%和16.6%。(2)减少深松频次处理下团聚体总固碳能力(TOPC)得到显著提升。NNS处理0—40cm土层平均团聚体固碳能力提升10.8%,但20—30cm土层团聚体固碳能力有所下降。不同粒径团聚体固碳能力表明,<0.25mm粒径团聚体固碳能力较强。(3)NNS处理对0—40cm土层土壤总有机碳(TOC)含量无显著影响,但增加了10—20cm土层TOC含量,减轻了表层土壤有机碳层化效果,降低了30—40cm土层TOC含量,促进了深层土壤有机碳的层化。(4)NNS处理0—40cm土层活性有机碳(EOC)含量显著增加24.9%,EOC含量的增加提升了EOC/TOC比值,增加了碳库活度(A)和碳库活度指数(AI),相比于S处理,增加碳库管理指数(CPIM)39.8%。【结论】长期连续深松不利于土壤团聚体的形成及土壤碳库的良性循环,而三年一深松的耕作模式有助于降低土壤团聚体的破坏程度,提高碳库管理指数,增强土壤碳库的活度,调节土壤碳库的更新和循环,是适合该地区的耕作模式。
张琦, 王淑兰, 王浩, 刘朋召, 王旭敏, 张元红, 李昊昱, 王瑞, 王小利, 李军. 深松与免耕频次对黄土旱塬春玉米田土壤团聚体与土壤碳库的影响[J]. 中国农业科学, 2020, 53(14): 2840-2851.
ZHANG Qi, WANG ShuLan, WANG Hao, LIU PengZhao, WANG XuMin, ZHANG YuanHong, LI HaoYu, WANG Rui, WANG XiaoLi, LI Jun. Effects of Subsoiling and No-Tillage Frequencies on Soil Aggregates and Carbon Pools in the Loess Plateau[J]. Scientia Agricultura Sinica, 2020, 53(14): 2840-2851.
表2
不同深松频次处理下土壤水稳定性团聚体平均质量直径和几何平均直径"
项目 Items | 处理 Treatment | 土层深度Depth | ||||
---|---|---|---|---|---|---|
0-10 cm | 10-20 cm | 20-30 cm | 30-40 cm | AVG | ||
平均质量直径 MWD | NNS | 1.05a | 0.97b | 1.03a | 0.88a | 0.98a |
NS | 1.04a | 1.00a | 0.85b | 0.85a | 0.94a | |
S | 0.92b | 0.94b | 0.82b | 0.72b | 0.85b | |
几何平均直径 GMD | NNS | 0.92a | 0.82a | 0.88a | 0.73a | 0.84a |
NS | 0.85b | 0.85a | 0.72ab | 0.72a | 0.78a | |
S | 0.75c | 0.77b | 0.68b | 0.60b | 0.70b |
表3
不同深松频次处理各粒径土壤团聚体固碳能力"
土层深度 Depth (cm) | 处理 Treatment | 总固碳能力 TOPC (g·kg-1) | 不同粒级团聚体固碳能力Aggregate-associated CPC (g·kg-1) | |||||
---|---|---|---|---|---|---|---|---|
>2 mm | 2-1 mm | 1-0.5mm | 0.5-0.25mm | 0.25-0.053mm | <0.053mm | |||
0-10 | NNS | 8.60a | 0.47a | 0.47b | 1.09a | 1.33a | 2.27a | 2.98a |
NS | 7.42ab | 0.39a | 0.36b | 0.79b | 0.89a | 2.05a | 2.94a | |
S | 6.42b | 0.37a | 0.85a | 1.09a | 0.65b | 1.82b | 1.63b | |
10-20 | NNS | 7.92a | 0.09c | 0.35b | 1.73a | 0.97a | 1.50a | 3.27a |
NS | 8.14a | 0.63a | 0.59a | 1.17a | 1.14a | 1.47a | 3.14a | |
S | 6.66b | 0.26b | 0.41b | 0.86b | 0.77a | 1.12b | 3.24a | |
20-30 | NNS | 4.58b | 0.15b | 0.27a | 0.41b | 0.72a | 1.35b | 1.68b |
NS | 6.77a | 0.10b | 0.24a | 0.36b | 0.59b | 3.47a | 2.01b | |
S | 6.93a | 0.21a | 0.33a | 0.50a | 0.85a | 1.38b | 3.65a | |
30-40 | NNS | 6.64a | 0.15a | 0.21a | 0.43a | 0.64a | 1.70a | 3.50a |
NS | 6.17a | 0.01b | 0.15a | 0.31a | 0.44b | 0.96b | 4.30a | |
S | 4.70b | 0.03b | 0.09b | 0.31a | 0.36b | 1.19b | 2.72b | |
AVG | NNS | 6.93a | 0.21a | 0.33b | 0.91a | 0.92a | 1.70a | 2.86b |
NS | 7.13a | 0.28a | 0.30b | 0.66b | 0.76b | 1.99a | 3.10a | |
S | 6.18b | 0.22a | 0.42a | 0.69b | 0.66c | 1.38b | 2.81b |
表5
不同深松频次处理土壤碳库组成变化"
土层 Depth (cm) | 处理 Treatment | 活性有机碳/总有机碳 EOC/TOC (%) | 非活性有机碳/总有机碳 HOC/TOC (%) | 氧化稳定系数 Kos |
---|---|---|---|---|
0-10 | NNS | 0.33a | 0.67b | 1.99b |
NS | 0.25b | 0.75a | 2.96a | |
S | 0.26b | 0.74a | 2.91a | |
10-20 | NNS | 0.19a | 0.81a | 4.38a |
NS | 0.20a | 0.80a | 4.11a | |
S | 0.22a | 0.78a | 3.57b | |
20-30 | NNS | 0.28a | 0.72a | 2.56b |
NS | 0.23b | 0.77a | 3.29a | |
S | 0.22b | 0.78a | 3.55a | |
30-40 | NNS | 0.48a | 0.52c | 1.08b |
NS | 0.40a | 0.60b | 1.53b | |
S | 0.21b | 0.79a | 3.70a | |
AVG | NNS | 0.32a | 0.68b | 2.50b |
NS | 0.27b | 0.73ab | 2.97ab | |
S | 0.23b | 0.77a | 3.43a |
表6
土壤碳库管理指数"
土层 Depth (cm) | 处理 Treatment | 碳库指数 CPI | 碳库活度 A | 碳库活度指数 AI | 碳库管理指数 CPMI |
---|---|---|---|---|---|
0-10 | NNS | 1.03a | 0.50a | 1.46a | 150.00a |
NS | 1.04a | 0.34b | 0.99b | 102.18b | |
S | 1.00b | 0.34b | 1.00b | 100.00b | |
10-20 | NNS | 1.18a | 0.23b | 0.81b | 95.94ab |
NS | 1.12a | 0.24b | 0.87b | 97.13ab | |
S | 1.00b | 0.28a | 1.00a | 100.00a | |
20-30 | NNS | 1.02a | 0.39a | 1.38a | 140.69a |
NS | 0.94b | 0.30a | 1.08b | 101.73b | |
S | 1.00a | 0.28a | 1.00b | 100.00b | |
30-40 | NNS | 0.80b | 0.93a | 3.42a | 275.09a |
NS | 0.95b | 0.65b | 2.42ab | 229.13a | |
S | 1.00a | 0.27c | 1.00b | 100.00b | |
AVG | NNS | 1.01a | 0.51a | 1.77a | 165.43a |
NS | 1.01a | 0.39b | 1.34ab | 132.54ab | |
S | 1.00a | 0.29b | 1.00b | 100.00b |
[1] | 薛建福, 赵鑫, SHADRACK B D, 陈阜, 张海林. 保护性耕作对农田碳、氮效应的影响研究进展. 生态学报, 2013,33(19):6006-6013. |
XUE J F, ZHAO X, SHADRACK B D, CHEN F, ZHANG H L. Advances in effects of conservation tillage on soil organic carbon and nitrogen. Acta Ecologica Sinica, 2013,33(19):6006-6013. (in Chinese) | |
[2] | 孔维萍, 成自勇, 张芮, 何钊全, 何正乾, 张晓霞, 刘静霞, 高阳. 保护性耕作在黄土高原的应用和发展. 干旱区研究, 2015,32(2):240-250. |
KONG W P, CHENG Z Y, ZHANG R, HE Z Q, HE Z Q, ZHANG X X, LIU J X, GAO Y. Application and development of conservation tillage techniques in the Loess Plateau. Arid Zore Research, 2015,32(2):240-250. (in Chinese) | |
[3] |
王碧胜, 蔡典雄, 武雪萍, 李景, 梁国鹏, 于维水, 王相玲, 杨毅宇, 王小彬. 长期保护性耕作对土壤有机碳和玉米产量及水分利用的影响. 植物营养与肥料学报, 2015,21(6):1455-1464.
doi: 10.11674/zwyf.2015.0610 |
WANG B S, CAI D X, WU X P, LI J, LIANG G P, YU W S, WANG X L, YANG Y Y, WANG X B. Effects of long-term conservation tillage on soil organic carbon, maize yield and water utilization. Journal of Plant Nutrition and Fertilize, 2015,21(6):1455-1464. (in Chinese)
doi: 10.11674/zwyf.2015.0610 |
|
[4] | XU J, HAN H F, NING T Y, LI Z J, LAI R. Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system. Field Crops Research, 2019,233:33-40. |
[5] | 何明, 高焕文, 董培岩, 崔德杰, 赵文阁. 一年两熟地区保护性耕作深松试验. 农业机械学报, 2018,49(7):58-63. |
HE M, GAO H W, DONG P Y, CUI D J, ZHAO W G. Sub-soiling experiment on double cropping and conservation tillage adopted area. Transactions of the Chinese Society for Agricultural Machinery, 2018,49(7):58-63. (in Chinese) | |
[6] | 王峻, 薛永, 潘剑君, 郑宪清, 秦秦, 孙丽娟, 宋科. 耕作和秸秆还田对土壤团聚体有机碳及其作物产量的影响. 水土保持学报, 2018,32(5):121-127. |
WANG J, XUE Y, PAN J J, ZHENG X Q, QIN Q, SUN L J, SONG K. Effect of tillage and straw incorporation on sequestration of organic carbon and crop yield. Journal of Soil and Water Conservation, 2018,32(5):121-127. (in Chinese) | |
[7] | 赵富王, 王宁, 苏雪萌, 李秋嘉. 黄土丘陵区主要植物根系对土壤有机质和团聚体的影响. 水土保持学报, 2019,33(5):105-113. |
ZHAO F W, WANG N, SU X M, LI Q J. Effect of main plant roots on soil organic matter and aggregates in Loses Hilly Region. Journal of Soil and Water Conservation, 2019,33(5):105-113. (in Chinese) | |
[8] | 杨思存, 王成宝, 霍琳, 姜万礼, 温美娟. 不同耕作措施对甘肃引黄灌区耕地土壤有机碳的影响. 农业工程学报, 2019,35(02):114-121. |
YANG S C, WANG C B, HUO L, JIANG W L, WEN M J. Effects of different tillage practices on soil organic carbon of cultivated land in Gansu Yellow River irrigation district. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(2):114-121. (in Chinese) | |
[9] | 于维水, 王碧胜, 王士超, 孟繁华, 卢昌艾. 长期不同施肥下我国4种典型土壤活性有机碳及碳库管理指数的变化特征. 中国土壤与肥料, 2018(2):29-34. |
YU W S, WANG B S, WANG S C, MENG F H, LU C A. Characteristics of soil labile organic carbon and carbon management index under different long-term fertilization systems in four typical soils of China. Soil and Fertilizer Sciences in China, 2018(2):29-34. (in Chinese) | |
[10] |
李景, 吴会军, 武雪萍, 蔡典雄, 姚宇卿, 吕军杰, 郑凯, 刘志平. 长期保护性耕作提高土壤大团聚体含量及团聚体有机碳的作用. 植物营养与肥料学报, 2015,21(2):378-386.
doi: 10.11674/zwyf.2015.0212 |
LI J, WU H J, WU X P, CAI D X, YAO Y Q, LÜ J J, ZHENG K, LIU Z P. Impact of long-term conservation tillage on soil aggregate formation and aggregate organic carbon contents. Journal of Plant Nutrition and Fertilizer, 2015,21(2):378-386. (in Chinese)
doi: 10.11674/zwyf.2015.0212 |
|
[11] | 王勇, 姬强, 刘帅, 孙汉印, 王旭东. 耕作措施对土壤水稳性团聚体及有机碳分布的影响. 农业环境科学学报, 2012,31(7):1365-1373. |
WANG Y, JI Q, LIU S, SUN H Y, WANG X D. Effects of tillage practices on water-stable aggregation and aggregate-associated organic C in soils. Journal of Agro-Environment Science, 2012,31(7):1365-1373. (in Chinese) | |
[12] | 张博文, 杨彦明, 张兴隆, 李金龙, 陈新宇, 李志新. 连续深松对黑土结构特性和有机碳及碳库指数影响. 中国土壤与肥料, 2019(2):6-13. |
ZHANG B W, YANG Y M, ZHANG X L, LI J L, CHEN X Y, LI Z X. Effects of continuous deep loosening on soil physical characteristics, organic carbon content and carbon pool index in black soil. Soil and Fertilizer Sciences in China, 2019(2):6-13. (in Chinese) | |
[13] | 蔡太义, 黄耀威, 黄会娟, 贾志宽, 李立科, 杨宝平, 韩思明. 不同年限免耕秸秆覆盖对土壤活性有机碳和碳库管理指数的影响. 生态学杂志, 2011,30(9):1962-1968. |
CAI T Y, HUANG Y W, HUANG H J, JIA Z K, LI L K, YANG B P, HAN S M. Soil labile organic carbon and carbon pool management index as affected by different years no-tilling with straw mulching. Chinese Journal of Ecology, 2011,30(9):1962-1968. (in Chinese) | |
[14] | 田慎重, 王瑜, 张玉凤, 边文范, 董亮, 罗加法, 郭洪海. 旋耕转深松和秸秆还田增加农田土壤团聚体碳库. 农业工程学报, 2017,33(24):133-140. |
TIAN S Z, WANG Y, ZHANG Y F, BIAN W F, DONG L, LUO J F, GUO H H. Residue returning with subsoiling replacing rotary tillage improving aggregate and associated carbon. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(24):133-140. (in Chinese) | |
[15] | 田慎重, 郭洪海, 董晓霞, 董亮, 郑东峰, 孙泽强, 王学君, 刘盛林. 耕作方式转变和秸秆还田对土壤活性有机碳的影响. 农业工程学报, 2016,32(S2):39-45. |
TIAN S Z, GUO H H, DONG X X, DONG L, ZHENG D F, SUN Z Q, WANG X J, LIU S L. Effect of tillage method change and straw return on soil labile organic carbon. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(S2):39-45. (in Chinese) | |
[16] | 张霞, 杜昊辉, 王旭东, 李军. 不同耕作措施对渭北旱塬土壤碳库管理指数及其构成的影响. 自然资源学报, 2018,33(12):2223-2237. |
ZHANG X, DU H H, WANG X D, LI J. Effects of different tillage methods on soil organic carbon pool management index and its composition in Weibei Highland. Journal of Natural Resources, 2018,33(12):2223-2237. (in Chinese) | |
[17] | 程科, 李军, 毛红玲. 不同轮耕模式对黄土高原旱作麦田土壤物理性状的影响. 中国农业科学, 2013,46(18):3800-3808. |
CHENG K, LI J, MAO H L. Effects of different rotational tillage patterns on soil physical properties in rainfed wheat fields of the Loess Plateau. Scientia Agricultura Sinica, 2013,46(18):3800-3808. (in Chinese) | |
[18] | 侯贤清, 李荣, 贾志宽, 韩清芳. 不同农作区土壤轮耕模式与生态效应研究进展. 生态学报, 2016,36(5):1215-1223. |
HOU X Q, LI R, JIA Z K, HAN Q F. Research progress on ecological effects under the rotational tillage patterns in agricultural regions of China. Acta Ecologica Sinica, 2016,36(5):1215-1223. (in Chinese) | |
[19] | 孔凡磊, 张海林, 孙国峰, 黄光辉, 陈阜. 轮耕措施对小麦玉米两熟制农田土壤碳库特性的影响. 水土保持学报, 2010,24(2):150-154, 183. |
KONG F L, ZHANG H L, SUN G F, HUANG G H, CHEN F. Rotational tillage effects on characteristics of soil carbon pool for the wheat-corn system. Journal of Soil and Water Conservation, 2010,24(2):150-154, 183. (in Chinese) | |
[20] |
王丽, 李军, 李娟, 柏炜霞. 轮耕与施肥对渭北旱作玉米田土壤团聚体和有机碳含量的影响. 应用生态学报, 2014,25(3):759-768.
pmid: 24984494 |
WANG L, LI J, LI J, BAI W X. Effects of tillage rotation and fertilization on soil aggregates and organic carbon content in corn field in Weibei Highland. Chinese Journal of Applied Ecology, 2014,25(3):759-768. (in Chinese)
pmid: 24984494 |
|
[21] | 陈宁宁, 李军, 吕薇, 王淑兰. 不同轮耕方式对渭北旱塬麦玉轮作田土壤物理性状与产量的影响. 中国生态农业学报, 2015,23(9):1102-1111. |
CHEN N N, LI J, LÜ W, WANG S L. Effects of different rotational tillage patterns on soil physical properties and yield of winter wheat-spring maize rotation field in Weibei highland. Chinese Journal of Eco-Agriculture, 2015,23(9):1102-1111. (in Chinese) | |
[22] | 陈源泉, 隋鹏, 严玲玲, 龙攀, 李柘锦, 王彬彬. 有机物料还田对华北小麦玉米两熟农田土壤有机碳及其组分的影响. 农业工程学报, 2016,32(S2):94-102. |
CHEN Y Q, SUI P, YAN L L, LONG P, LI Z J, WANG B B. Effects of different organic wastes incorporation on soil organic carbon and its fraction under wheat-maize cropping system in North China Plain. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(S2):94-102. (in Chinese) | |
[23] | 李玮, 郑子成, 李廷轩, 王永东. 退耕植茶对川西低山丘陵区土壤有机碳库的影响. 中国农业科学, 2014,47(8):1642-1651. |
LI W, ZHENG Z C, LI T X, WANG Y D. Effects of returning farmland to tea on soil organic carbon pool of hilly region in the western Sichuan. Scientia Agricultura Sinica, 2014,47(8):1642-1651. (in Chinese) | |
[24] | WANG H, WANG S L, ZHANG Y J, WANG X L, WANG R, LI J. Tillage system change affects soil organic carbon storage and benefits land restoration on loess soil in North China. Land Degradation and Development, 2018,29:2880-2887. |
[25] |
李玉洁, 王慧, 赵建宁, 皇甫超河, 杨殿林. 耕作方式对农田土壤理化因子和生物学特性的影响. 应用生态学报, 2015,26(3):939-948.
pmid: 26211079 |
LI Y J, WANG H, ZHAO J N, HUANGFU C H, YANG D L. Effects of tillage methods on soil physicochemical properties and biological characteristics in farmland: A review. Chinese Journal of Applied Ecology, 2015,26(3):939-948. (in Chinese)
pmid: 26211079 |
|
[26] | 李爱宗, 张仁陟, 王晶. 耕作方式对黄绵土水稳定性团聚体形成的影响. 土壤通报, 2008(3):480-484. |
LI A Z, ZHANG R Z, WANG J. Effect of tillage methods on the formation of water-stable aggregates in loess soil. Chinese Journal of Soil Science, 2008(3):480-484. (in Chinese) | |
[27] | 黄炳林, 王孟雪, 金喜军, 胡国华, 张玉先. 不同耕作处理对土壤微生物、酶活性及养分的影响. 作物杂志, 2019(6):104-113. |
HUANG B L, WANG M X, JIN X J, HU G H, ZHANG Y X. Effect of different tillage treatment on soil microorganisms, enzyme activities and nutrients. Crops, 2019(6):104-113. (in Chinese) | |
[28] | 张艺, 尹力初, 戴齐. 后续施肥措施改变对红壤性水稻土团聚体有机碳组分的影响. 水土保持学报, 2016,30(6):278-283, 324. |
ZHANG Y, YIN L C, DAI Q. Effect of following-up reforming on the fractions of aggregate-associated organic carbon in red paddy soils. Journal of Soil and Water Conservation, 2016,30(6):278-283, 324. (in Chinese) | |
[29] | 李昊昱, 孟兆良, 庞党伟, 陈金, 侯永坤, 崔海兴, 金敏, 王振林, 李勇. 周年秸秆还田对农田土壤固碳及冬小麦-夏玉米产量的影响. 作物学报, 2019,45(6):893-903. |
LI H Y, MENG Z L, PANG D W, CHEN J, HOU Y K, CUI H X, JIN M, WANG Z L, LI Y. Effect of annual straw return model on soil carbon sequestration and crop yields in winter wheat-summer maize rotation farmland. Acta Agronomica Sinica, 2019,45(6):893-903. (in Chinese) | |
[30] | 梁伟, 崔德杰, 柳新伟, 蒋帅, 郭晓冬. 一年两作栽培模式下保护性耕作对土壤团聚体及微生物的影响. 山东农业科学, 2019,51(1):98-103, 127. |
LIANG W, CUI D J, LIU X W, JIANG S, GUO X D. Effect of conservation tillage on soil aggregates and microorganism under double cropping cultivation mode. Shandong Agricultural Sciences, 2019,51(1):98-103, 127. (in Chinese) | |
[31] | 金鑫鑫, 汪景宽, 孙良杰, 王帅, 裴久渤, 安婷婷, 丁凡, 高晓丹, 徐英德. 稳定13C同位素示踪技术在农田土壤碳循环和团聚体固碳研究中的应用进展. 土壤, 2017,49(2):217-224. |
JIN X X, WANG J K, SUN L J, WANG S, PEI J B, AN T T, DING F, GAO X D, XU Y D. Progress of carbon cycle in farmland and sequestration in soil aggregates revealed by stable13C isotope. Soils, 2017,49(2):217-224. (in Chinese) | |
[32] |
傅敏, 郝敏敏, 胡恒宇, 丁文超, 翟明振, 张海依. 土壤有机碳和微生物群落结构对多年不同耕作方式与秸秆还田的响应. 应用生态学报, 2019,30(9):3183-3194.
pmid: 31529894 |
FU M, HAO M M, HU H Y, DING W C, ZHAI M Z, ZHANG H Y. Responses of soil organic carbon and microbial community structure to different tillage patterns and straw returning for multiple years. Chinese Journal of Applied Ecology, 2019,30(9):3183-3194. (in Chinese)
pmid: 31529894 |
[1] | 尉亚囡, 薄其飞, 唐安, 高嘉瑞, 马田, 尉熊熊, 张方方, 周祥利, 岳善超, 李世清. 长期覆膜和施用有机肥对黄土高原春玉米产量和品质的效应[J]. 中国农业科学, 2023, 56(9): 1708-1717. |
[2] | 王飞, 李清华, 何春梅, 游燕玲, 黄毅斌. 长期施肥对黄泥田土壤团聚体中氮素积累和有机氮组成的影响[J]. 中国农业科学, 2023, 56(9): 1718-1728. |
[3] | 马胜兰, 况福虹, 林洪羽, 崔俊芳, 唐家良, 朱波, 蒲全波. 秸秆还田量对川中丘陵冬小麦-夏玉米轮作体系土壤物理特性的影响[J]. 中国农业科学, 2023, 56(7): 1344-1358. |
[4] | 孙涛, 冯晓敏, 高新昊, 邓艾兴, 郑成岩, 宋振伟, 张卫建. 多样化种植对土壤团聚体组成及其有机碳和全氮含量的影响[J]. 中国农业科学, 2023, 56(15): 2929-2940. |
[5] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[6] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. |
[7] | 徐芳蕾,张杰,李阳,张伟伟,薄其飞,李世清,岳善超. 施肥方式对黄土高原旱作春玉米农田土壤氨挥发的影响[J]. 中国农业科学, 2022, 55(12): 2360-2371. |
[8] | 郑凤君, 王雪, 李生平, 刘晓彤, 刘志平, 卢晋晶, 武雪萍, 席吉龙, 张建诚, 李永山. 免耕覆盖下土壤水分、团聚体稳定性及其有机碳分布对小麦产量的协同效应[J]. 中国农业科学, 2021, 54(3): 596-607. |
[9] | 李娥,赵锦,叶清,高继卿,杨晓光. 全球气候变暖对中国种植制度可能影响ⅩⅢ. 东北三省春玉米熟型调整的降水限制及其对产量的可能影响[J]. 中国农业科学, 2021, 54(18): 3847-3859. |
[10] | 姚凡云,刘志铭,曹玉军,吕艳杰,魏雯雯,吴兴宏,王永军,谢瑞芝. 不同类型氮肥对东北春玉米土壤N2O和CO2昼夜排放的影响[J]. 中国农业科学, 2021, 54(17): 3680-3690. |
[11] | 马红梅,曹寒冰,谢英荷,李廷亮,刘凯,张奇茹,姜丽伟,曹静,邵靖琳,武文玥,栗文琪. 晋南黄土旱塬小麦养分投入与化肥减施经济环境效应评价[J]. 中国农业科学, 2021, 54(13): 2804-2817. |
[12] | 刘凯,谢英荷,李廷亮,马红梅,张奇茹,姜丽伟,曹静,邵靖琳. 减氮覆膜对黄土旱塬小麦产量及养分吸收利用的影响[J]. 中国农业科学, 2021, 54(12): 2595-2607. |
[13] | 苗芳芳,勉有明,普雪可,吴春花,周永瑾,侯贤清. 耕作覆盖对宁南旱区土壤团粒结构及马铃薯水分利用效率的影响[J]. 中国农业科学, 2021, 54(11): 2366-2376. |
[14] | 黄秋婉,刘志娟,杨晓光,白帆,刘涛,张镇涛,孙爽,赵锦. 东北三省西部春玉米适应气候变化的高产高效灌溉方案分析[J]. 中国农业科学, 2020, 53(21): 4470-4484. |
[15] | 曹玉军,姚凡云,王丹,吕艳杰,刘小丹,王立春,王永军,李从锋. 不同栽培技术因子对雨养春玉米产量与氮素效率差异的影响[J]. 中国农业科学, 2020, 53(15): 3036-3047. |
|