[1] Zhang X K, Zhou Q H, Cao J H, Yu B J. Differential Cl-/salt tolerance and NaCl-induced alternations of tissue and cellular ion fluxes in glycine max, glycine soja and their hybrid seedlings. Journal of Agronomy & Crop Science, 2011, 197(5): 329-339.
[2] Yang F, An F H, Ma H Y, Wang Z C, Zhou X, Liu Z J. Variations on soil salinity and sodicity and its driving factors analysis under microtopography in different hydrological conditions. Water, 2016, 8(6): 227.
[3] Ardahanlioglu O, Oztas T, Evren S, Yilmaz H, Yildirim Z N. Spatial variability of exchangeable sodium, electrical conductivity, soil pH and boron content in salt- and sodium-affected areas of the Igdir plain (Turkey). Journal of Arid Environments, 2003, 54(3): 495-503.
[4] Bazijizina N, Barrett-lennard E G, Colmer T D. Plant growth and physiology under heterogeneous salinity. Plant and Soil, 2012, 354(1/2): 1-19.
[5] Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59(1): 651-681.
[6] Sun J J, Yang G W, Zhang W J, Zhang Y J. Effects of heterogeneous salinity on growth, water uptake, and tissue ion concentrations of alfalfa. Plant & Soil, 2016, 408(1/2): 211-226.
[7] Chen S, Zhang Z Y, Wang Z C, Guo X P, Liu M H. Effects of uneven vertical distribution of soil salinity under a buried straw layer on the growth, fruit yield, and fruit quality of tomato plants. Scientia Horticulturae, 2016, 203: 131-142.
[8] Bazijizina N, Barrett-lennard E G, Colmer T D. Plant responses to heterogeneous salinity: Growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone. Journal of Experimental Botany, 2012, 63(18): 6347-6358.
[9] Kong X Q, Luo Z, Dong H Z, Eneji A E, Li W J. Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton. Journal of Experimental Botany, 2012, 63(5): 2105-2116.
[10] Dong H Z, Kong X Q, Luo Z, Li W J, Xin C S. Unequal salt distribution in the root zone increases growth and yield of cotton. European Journal of Agronomy, 2010, 33(4): 285-292.
[11] Dong H Z, Li W J, Tang W, Zhang D M. Furrow seeding with plastic mulching increases stand establishment and lint yield of cotton in a saline field. Agronomy Journal, 2010, 100(6): 1640-1646.
[12] 曹宏, 章会玲, 盖琼辉, 陈红, 赵满来. 22个紫花苜蓿品种的引种试验和生产性能综合评价. 草业学报, 2011, 20(6): 219-229.
Cao H, Zhang H L, Gai Q H, Chen H, Zhao M L. Test and comprehensive assessment on the performance of 22 alfalfa varieties. Acta Prataculturae Sinica, 2011, 20(6): 219-229. (in Chinese)
[13] 张国盛, 黄高宝, 张仁陟, 黄鹏, 晋小军, 李玲玲. 种植苜蓿对黄绵土表土理化性质的影响. 草业学报, 2003, 12(5): 88-93.
Zhang G S, Huang G B, Zhang R Z, Huang P, Jin X J, Li L L. The effects of lucerne on top soil properties of Huang mian soil. Acta Prataculturae Sinica, 2003, 12(5): 88-93. (in Chinese)
[14] Bertrand A, Dhont C, Bipfubusa M, Chalifour F, Drouin P, Beauchamp C J. Improving salt stress responses of the symbiosis in alfalfa using salt-tolerant cultivar and rhizobial strain. Applied Soil Ecology, 2015, 87: 108-117.
[15] Zekri M, Parsons L R. Response of split-root sour orange seedlings to NaCl and polyethylene glycol stresses. Journal of Experimental Botany, 1990, 41(1): 35-40.
[16] Flores P, Botella M A, Martinez V, Cerda A. Response to salinity of tomato seedlings with a split-root system: Nitrate uptake and reduction. Journal of Plant Nutrition, 2002, 25(1): 177-187.
[17] Jan A U, Hadi F, Midrarullah, Nawaz M A, Rahman K. Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.). Plant Physiology & Biochemistry, 2017, 116: 139-149.
[18] 张金林, 李惠茹, 郭姝媛, 王锁民, 施华中, 韩庆庆, 包爱科, 马清. 高等植物适应盐逆境研究进展. 草业学报, 2015, 24(12): 220-236.
Zhang J L, Li H R, Guo S Y, Wang S M, Shi H Z, Han Q Q, Bao A K, Ma Q. Research advances in higher plant adaptation to salt stress. Acta Prataculturae Sinica, 2015, 24(12): 220-236. (in Chinese)
[19] Munns R. Comparative physiology of salt and water stress. Plant Cell & Environment, 2002, 25(2): 239-250.
[20] Kiani D, Soltabloo H, Ramezanpour S S, Qumi A A N, Yamchi A, Nezhad K Z, Tavakol E. A barley mutant with improved salt tolerance through ion homeostasis and ROS scavenging under salt stress. Acta Physiologiae Plantarum, 2017, 39(3): 90.
[21] Guo H, Wang Y, Li D, Chen J, Zong J, Wang Z. Growth response and ion regulation of seashore paspalum accessions to increasing salinity. Environmental and Experimental Botany, 2016, 131: 137-145.
[22] Zhang J L, Shi H. Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research, 2013, 115(1): 1-22.
[23] Kronzucker H J, Britto D T. Sodium transport in plants: a critical review. The New phytologist, 2011, 189(1): 54-81.
[24] Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta Vulgaris. Plant physiology, 1949, 24(1): 1-15.
[25] Song L, Ding W, Zhao M, Sun B, Zhang L. Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Science, 2006, 171(4): 449-458.
[26] 张殿忠, 汪沛洪, 赵会贤. 测定小麦叶片游离脯氨酸含量的方法. 植物生理学报, 1990(4): 62-65.
Zhang D Z, Wang P H, Zhao H X. Determination of the content of free proline in wheat leaves. Plant Physiology Communications, 1990(4): 62-65. (in Chinese)
[27] Sandhu D, Cornacchione M V, Ferreira J F, Suarez D L. Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt-response genes. Scientific Reports, 2017, 7: 42958.
[28] Quan W L, Liu X, Wang H Q, Chan Z L. Physiological and transcriptional responses of contrasting alfalfa (Medicago sativa L.) varieties to salt stress. Plant Cell, Tissue and Organ Culture, 2016, 126(1): 105-115.
[29] Farissi M, Faghire M, Bargaz A, Bouizgaren A, Makoudi B, Sentenac H, Ghoulam C. Growth, nutrients concentrations, and enzymes involved in plants nutrition of alfalfa populations under saline conditions. Journal of Agricultural Science & Technology, 2014, 16(2): 301-314.
[30] Bazihizina N, Colmer T D, Barrett-lennard E G. Response to non-uniform salinity in the root zone of the halophyte Atriplex nummularia: growth, photosynthesis, water relations and tissue ion concentrations. Annals of botany, 2009, 104(4): 737-745.
[31] 杨婷, 谢志霞, 喻琼, 刘小京. 局部根系盐胁迫对冬小麦生长和光合特征的影响. 中国生态农业学报, 2014, 22(9): 1074-1078.
Yang T, Xie Z X, Yu Q, Liu X J. Effects of partial root stress on seedling growth and photosynthetic characteristics of winter wheat. Chinese Journal of Eco-Agriculture, 2014, 22(9): 1074-1078. (in Chinese)
[32] Flowers T J, Colmer T D. Salinity tolerance in halophytes. The New phytologist, 2008, 179(4): 945-963.
[33] McLean E H, Ludwig M, Grierson P F. Root hydraulic conductance and aquaporin abundance respond rapidly to partial root-zone drying events in a riparian Melaleuca species. New Phytologist, 2011, 192(3): 664-675.
[34] Hariadi Y, Marandon K, Yu T, Jacobsen S E, Shabala S. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany, 2011, 62(1): 185-193.
[35] Wu W, Zhang Q, Ervin E H, Zhang X. Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Frontiers in plant science, 2017, 8: 1017.
[36] 颜坤, 赵世杰, 徐化凌, 吴从稳, 陈小兵. 盐胁迫对不同倍性金银花光合特性的影响. 中国农业科学, 2015, 48(16): 3275-3286.
Yan K, Zhao S J, Xu H L, Wu C W, Chen X B. Effects of salt stress on photosynthetic characters in honeysuckle with different ploidies. Scientia Agricultura Sinica, 2015, 48(16): 3275-3286. (in Chinese)
[37] Moradi A. Effect of mycorrhizal inoculation on growth, nitrogen fixation and nutrient uptake in alfalfa (Medicago sativa) under salt stress. Cercetari Agronomice in Moldova, 2016, 49(1): 67-80.
[38] 景艳霞, 袁庆华. NaCl胁迫下苜蓿不同器官中离子分布及耐盐机制分析. 中国草地学报, 2013, 35(3): 38-42.
Jing Y X, Yuan Q H. Ion distribution in different organs of alfalfa under NaCl stress and analysis of salt-tolerant mechanism. Chinese Journal of Grassland, 2013, 35(3): 38-42. (in Chinese)
[39] Messedi D, Labidi N, Grignon C, Abdelly C. Limits imposed by salt to the growth of the halophyte Sesuvium portulacastrum. Journal of plant nutrition and soil science, 2004, 167(6): 720-725.
[40] WANG N, QIAO W, LIU X, SHI J, XU Q, ZHOU H, YAN G, HUANG Q. Relative contribution of Na+/K+ homeostasis, photochemical efficiency and antioxidant defense system to differential salt tolerance in cotton (Gossypium hirsutum L.) cultivars. Plant physiology and biochemistry, 2017, 119: 121-131.
[41] 宁丽华, 张大勇, 刘佳, 何晓兰, 万群, 徐照龙, 黄益洪, 邵宏波. 盐胁迫下苗期栽培大豆生理响应及Na+动态平衡关键基因的表达. 中国农业科学, 2016, 49(24): 4714-4725.
Ning L H, Zhang D Y, Liu J, He X L, Wan Q, Xu Z L, Huang Y H, Shao H B. Effect of salt stress on physiological responses and the expression of key genes involved in Na+ homeostasis of soybean seedlings. Scientia Agricultura Sinica, 2016, 49(24) :4714-4725. (in Chinese) |