[1]Hardy J, Singleton A. Genome wide association studies and human disease. New England Journal of Medicine, 2009, 360:1759-1768.
[2]Wang J Y, Luo Y R, Fu W X, Lu X, Zhou J P, Ding X D, Liu J F, Zhang Q. Genome-wide association studies for hematological traits in swine. Animal Genetics, 2012, 44(1): 34-43.
[3]Pant S D, Schenkel F S, Verschoor C P, You Q, Kelton D F, Moore S S. A principal component regression based genome wide analysis approach reveals the presence of a novel QTL on BTA7 for MAP resistance in holstein cattle. Genomics, 2010, 95(3): 176-182.
[4]Shen X, Zeng H, Xie L, He J, Li J, Xie X J, Luo C L, Xu H P, Zhou M, Nie Q H, Zhang X Q. The GTPase activating Rap/RanGAP domain-like 1 gene is associated with chicken reproductive traits. PLoS One, 2012, 7(4): e33851.
[5]Liu R R, Sun Y F, Zhao G P, Wang F J, Wu D, Zheng M Q, Chen J L, Zhang L, Hu Y D, Wen J. Genome-wide association study identifies loci and candidate genes for body composition and meat quality traits in Beijing-You Chickens. PLoS One, 2013, 8(4): e61172.
[6]Liu W B, Li D F, Liu J F, Chen S R, Qu L J, Zheng J X, Xu G Y, Yang N. A genome-wide SNP scan reveals novel loci for egg production and quality traits in White Leghorn and Brown-Egg dwarf layers. PLoS One, 2011, 6(12): e28600.
[7]张磊, 刘冉冉, 赵桂苹, 文杰, 郑麦青, 吴丹, 胡耀东, 李鹏, 刘丽. 北京油鸡血清IgG含量的GWAS初步分析. 第十五次全国家禽学术讨论会论文集. 2011: 10-15.
Zhang L, Liu R R, Zhao G P, Wen J, Zheng M Q, Wu D, Hu Y D, Li P, Liu L. Preliminary analysis of serum IgG levels in Beijing-You chickens//Collected Papers on 15th National Poultry Academic Conference. 2011: 10-15. (in Chinese)
[8]张磊, 郑麦青, 刘冉冉, 文杰, 吴丹, 胡耀东, 孙艳发, 李鹏, 刘丽, 赵桂苹. 鸡胸腺重和脾脏重性状的全基因组关联. 中国农业科学, 2012, 45(15): 3165-3175.
Zhang L, Zheng M Q, Liu R R, Wen J, Wu D, Hu Y D, Sun Y F, Li P, Liu L, Zhao G P. Genome-wide association of thymus and spleen mass in Chicken. Scientia Agricultura Sinica, 2012, 45(15): 3165-3175. (in Chinese)
[9]Herbst-kralovetz M M, Pyles R B. Quantification of poly I:C-mediated protection against genital herpes simplex virus type 2 infection. Journal of Virology, 2006, 80(20): 9988-9997.
[10]Colby C, Chamberlin M J. The specificity of interferon induction in chick mbryo cells by helical RNA. Proceedings of the National Academy of Sciences of the United States of America , 1969, 63(1): 160-167.
[11]Nadkarni M A, Martin F E, Jacques N A, Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology, 2002, 148(1): 257-266.
[12]Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 2008, 3(6):1101-1108.
[13]周光炎. 免疫学原理. 上海:上海科学技术出版社, 2007: 100-101.
Zhou G Y. Principles of Immunology. Shanghai: Shanghai Science and Technique Publishing House, 2007: 100-101. (in Chinese)
[14]Reina M, Georg K. Structure and function of the spleen. Nature Immunology, 2005, 5: 606-616.
[15]Salomonsen J, Sorensen M R, Marston D A, Rogers S L, Collen T, van Hateren A, Smith A L, Beal R K, Skjødt K, Kaufman J. Two CD1 genes map to the chicken MHC, indicating that CD1 genes are ancient and likely to have been present in the primordial MHC. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(24): 8668-8673.
[16]Miller M M, Wang C, Parisini E, Coletta R D, Goto R M, Lee S Y. Characterization of two avian MHC-like genes reveals an ancient origin of the CD1 family. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(24): 8674-8679.
[17]Dougan S K, Kaser A, Blumberg R S. CD1 expression on antigen-presenting cells. Microbiology and Immunology, 2007(314): 113-141.
[18]Ly N, Danzl N. M, Wang J, Zojonc D M, Dascher C C. Conservation of CD1 protein expression patterns in the chicken. Developmental & Comparative Immunology, 2010, 34(2): 123-132.
[19]Porcelli S. A. Bird genes give new insights into the origins of lipid antigen presentation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(24): 8399.
[20]Chazara O, Tixier-Boichard M, Morin V, Zoorob R, Bed B. Organization and diversity of the class II DM region of the chicken MHC. Molecular Immunology, 2011, 48(9/10): 1263-1271.
[21]仇艳光, 王江雁, 王沛. TRIM蛋白家族结构与抗病毒功能. 中国免疫学杂志, 2013, 29(1): 107-110.
Chou Y G, Wang J Y, Wang P. The structure and antiviral function of trim protein. Chinese Journal of Immunology, 2013, 29(1): 107-110. (in Chinese)
[22]Choi K, Kim K, Kwon I C, Kim I S, Ahn H J. Systemic delivery of siRNA by chimeric capsid protein: Tumor targeting and RNAi activity in vivo. Molecular Pharmaceutics, 2013, 10(1): 18-25.
[23]Meroni G, Diez-Roux G. TRIM/RBCC, a novel class of single protein RING finger’E3 ubiquitin ligases. Bioessays, 2005, 27(11): 1147-1157.
[24]Zurek B, Schoultz I, Neerincx A, Napolitano L M, Birkner K, Bennek E, Sellge G, Lerm M, Meroni G, Söderholm J D, Kufer T A. TRIM27 negatively regulates NOD2 by ubiquitination and proteasomal degradation. PLoS One, 2012, 7(7): e41255.
[25]Cai X J, Srivastava S, Sun Y, Li Z, Wu H Y, Jelaskad L Z, Li J, Rachel S. Backer S J M, Skolnik E Y. Tripartite motif containing protein 27 negatively regulates CD4 T cells by ubiquitinating and inhibiting the class II PI3K-C2β//Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20072-20077.
[26]Inoue E, Yamauchi J. AMP-activated protein kinase regulates PEPCK gene expression by direct phosphorylation of a novel zinc finger transcription factor. Biochemical and Biophysical Research Communications, 2006, 351(4): 793-799.
[27]Shirai T, Inoue E, Ishimi Y, Yamauchi J. AICAR response element binding protein (AREBP), a key modulator of hepatic glucose production regulated by AMPK in vivo. Biochemical and Biophysical Research Communications, 2011, 414(2): 287-291. |