[1]Zheng Z, Xu X, Crosley R A, Greenwalt S A, Sun Y, Blakeslee B, Wang L, Ni W, Sopko M S, Yao C, Yau K, Burton S, Zhuang M, McCaskill D G, Gachotte D, Thompson M, Greene T W. The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. Plant Physiology, 2010, 153: 99-113.
[2]Zhang H Y, Mao X G, Wang C S, Jing R L. Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS One, 2010, 5: e16041.
[3]Mao X G, Zhang H Y, Tian S J, Chang X P, Jing R L. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. Journal of Experimental Botany, 2010, 61: 683-696.
[4]Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T. Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. The Plant Cell, 2004, 16: 1163-1177.
[5]Boudsocq M, Barbier-Brygoo H, Lauriere C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. The Journal of Biological Chemistry, 2004, 279: 41758-41766.
[6]McLoughlin F, Galvan-Ampudia C S, Julkowska M M, Caarls L, van der Does D, Lauriere C, Munnik T, Haring M A, Testerink C. The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. The Plant Journal, 2012, 72: 436-449.
[7]Coello P, Hey S J, Halford N G. The sucrose non-fermenting-1-related (SnRK) family of protein kinases: Potential for manipulation to improve stress tolerance and increase yield. Journal of Experimental Botany, 2011, 62: 883-893.
[8]Zhang H Y, Mao X G, Jing R L. SnRK2 acts within an intricate network that links sucrose metabolic and stress signaling in wheat. Plant Signaling & Behavior, 2011, 6: 652-654.
[9]Fujii H, Verslues P E, Zhu J K. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proceedings of the National Academy of Sciences of the USA, 2011, 108: 1717-1722.
[10]Huai J, Wang M, He J, Zheng J, Dong Z, Lv H, Zhao J, Wang G. Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Report, 2008, 27: 1861-1868.
[11]Zhang H Y, Mao X G, Jing R L, Chang X P, Xie H M. Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses. Journal of Experimental Botany, 2011, 62: 975-988.
[12]Tian S J, Mao X G, Zhang H Y, Yang S M, Jing R L. Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat. Journal of Experimental Botany, 2013, 64: 2063-2080.
[13]张洪映, 毛新国, 景蕊莲, 谢惠民, 昌小平. 小麦TaPK7基因的克隆及其在多种胁迫条件下的表达分析. 麦类作物学报, 2008, 28(2): 177-182.
Zhang H Y, Mao X G, Jing R L, Xie H M, Chang X P. Cloning and expression analysis of TaPK7 under different abiotic stresses in wheat. Journal of Triticeae Crops, 2008, 28(2): 177-182. (in Chinese)
[14]连魏卫, 唐益苗, 高世庆, 张朝, 赵昌平. 小麦TaSnRK2.9蛋白激酶基因克隆与生物信息学分析. 中国农学通报, 2011, 27(33): 6-12.
Lian W W, Tang Y M, Gao S Q, Zhang C, Zhao C P. Identification and bioinformatics analysis of TaSnRK2.9 in wheat. Chinese Agriculture Science Bulletin, 2011, 27(33): 6-12. (in Chinese)
[15]张洪映, 毛新国, 景蕊莲, 谢惠民, 昌小平. 小麦TaPK7基因单核苷酸多态性与抗旱性的关系. 作物学报, 2008, 34(9): 1537-1543.
Zhang H Y, Mao X G, Jing R L, Xie H M, Chang X P. Relationship between single nucleotide polymorphism of TaPK7 gene and drought tolerance in wheat. Acta Agronomica Sinica, 2008, 34(9): 1537-1543. (in Chinese)
[16]Zhang H Y, Mao X G, Zhang J N, Chang X P, Wang C S, Jing R L. Genetic diversity analysis of abiotic stress response gene TaSnRK2.7-A in common wheat. Genetica, 2011, 139: 743-753.
[17]Zhang H Y, Mao X G, Zhang J N, Chang X P, Jing R L. Single-nucleotide polymorphisms and association analysis of drought- resistance gene TaSnRK2.8 in common wheat. Plant Physiology and Biochemistry, 2013, 70: 174-181.
[18]Garces-Claver A, Fellman S M, Gil-Ortega R, Jahn M, Arnedo-Andres M S. Identification, validation and survey of a single nucleotide polymorphism (SNP) associated with pungency in Capsicum spp. Theoretical and Applied Genetic, 2007, 115: 907-916.
[19]Sachidanandam R, Weissman D, Schmidt S C, Kakol J M, Stein L D, Marth G, Sherry S, Mullikin J C, Mortimore B J, Willey D L, Hunt S E, Cole C G, Coggill P C, Rice C M, Ning Z, Rogers J, Bentley D R, Kwok P-Y, Mardis E R, Yeh R T, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston R H, McPherson J D, Gilman B, Schaffner S, Etten W J V, Reich D, Higgins J, Daly M J, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody M C, Linton L, Lander E S, Altshuler D. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001, 409: 928-933.
[20]Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Monna L, Minobe Y. Search for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA Research, 2002, 9: 163-171.
[21]Ching A, Caldwell K S, Jung M, Dolan M, Smith O S, Tingey S, Morgante M, Rafalski A J. SNP frequency,haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genetic, 2002, 3: 19.
[22]郝岗平, 杨清, 吴忠义, 曹鸣庆, 黄丛林. 植物的单核苷酸多态性及其在作物遗传育种中的应用. 植物学通报, 2004, 21(5): 618-624.
Hao G P, Yang Q, Wu Z Y, Cao M Q, Huang C L. Single nuleotide polymorphism (SNP) and its applications in crop genetics and breeding. Chinese Bulletin of Botany, 2004, 21(5): 618-624. (in Chinese)
[23]Liu Y N, He Z H, Appels R, Xia X C. Functional markers in wheat: current status and future prospects. Theoretical and Applied Genetic, 2012, 125: 1-10.
[24]李玮瑜, 张斌, 张嘉楠, 昌小平, 李润植, 景蕊莲. 利用关联分析发掘小麦自然群体旗叶叶绿素含量的优异等位变异. 作物学报, 2012, 38(6): 962-970.
Li W Y, Zhang B, Zhang J N, Chang X P, Li R Z, Jing R L. Exploring elite elleles for chlorophyll content of flag leaf in natural population of wheat by association analysis. Acta Agronomica Sinica, 2012, 38(6): 962-970. (in Chinese)
[25]宋彦霞. 小麦抽穗期及其农艺性状的QTL分析[D]. 雅安:四川农业大学, 2005.
Song Y X. QTL analysis of the wheat earing period and other agronomic characters[D]. Yaan: Sichuan Agricultural University, 2005. (in Chinese)
[26]Librado P, Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25: 1451-1452.
[27]Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
[28]Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Molecular Biology, 2005, 57: 461-485.
[29]Zondervan K T, Cardon L R. The complex interplay among factors that influence allelic association. Genetics, 2004, 5: 89-100.
[30]赵曦, 王荣焕, 于永涛, 王天宇, 黎裕. 关联分析在玉米遗传学研究中的应用. 玉米科学, 2008, 16(1): 52-55.
Zhao X, Wang R H, Yu Y T, Wang T Y, Li Y. Application of association analysis in maize genetics. Journal of Maize Sciences, 2008, 16(1): 52-55. (in Chinese)
[31]Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Molecular Breeding, 2007, 19: 341-356.
[32]Eizenga G C, Agrama H A, Lee F N, Yan W, Jia Y. Identifying novel resistance genes in newly introduced blast resistant rice germplasm. Crop Science, 2006, 46: 1870-1878.
[33]Roy J K, Bandopadhyay R, Rustgi S, Balyan H S, Gupta P K. Association analysis of agronomically important traits using SSR, SAMPL and AFLP markers in bread wheat. Current Science, 2006, 90: 683-689.
[34]雷梦林, 李昂, 昌小平, 徐兆师, 马有志, 刘惠民, 景蕊莲. 小麦转录因子基因W16的功能标记作图和关联分析. 中国农业科学, 2012, 45(9): 1667-1675.
Lei M L, Li A, Chang X P, Xu Z S, Ma Y Z, Liu H M, Jing R L. Functional marker mapping and association analysis of gene W16 in common wheat. Scientia Agricultura Sinica, 2012, 45(9): 1667-1675. (in Chinese)
[35]刘丽华. 小麦4A染色体六个农艺性状的关联分析[D]. 武汉: 华中农业大学, 2009.
Liu L H. Association mapping of six agronomic traits on chromosome 4A of wheat[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese)
[36]崔法. 高密度小麦遗传连锁图谱构建及产量相关性状QTL定位[D]. 泰安: 山东农业大学, 2011.
Cui F. Construction of high-density wheat molecular genetic map and QTL analysis for yield-related traits[D]. Taian: Shandong Agricultural University, 2011. (in Chinese)
[37]Yang D L, Jing R L, Chang X P, Li W. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics, 2007, 176: 571-584.
[38]Su J Y, Zheng Q, Li H W, Li B, Lian R L, Tong Y P, Li Z S. Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Science, 2009, 176: 824-836. |