| [1] |
CHEUNG G Y C, BAE J S, OTTO M. Pathogenicity and virulence of Staphylococcus aureus. Virulence, 2021, 12(1): 547-569.
doi: 10.1080/21505594.2021.1878688
|
| [2] |
徐重新, 沈建兴, 金嘉凤, 何鑫, 谢雅晶, 张霄, 朱庆, 刘媛, 刘贤金. 基因工程抗体功能修饰及其在农业食品安全中的应用策略. 中国农业科学, 2025, 58(2): 355-386. doi: 10.3864/j.issn.0578-1752.2025.02.011.
|
|
XU C X, SHEN J X, JIN J F, HE X, XIE Y J, ZHANG X, ZHU Q, LIU Y, LIU X J. Functional modification of genetically engineered antibodies and their application strategies in agriculture and food safety. Scientia Agricultura Sinica, 2025, 58(2): 355-386. doi: 10.3864/j.issn.0578-1752.2025.02.011. (in Chinese)
|
| [3] |
THAM E H, CHIA M, RIGGIONI C, NAGARAJAN N, COMMON J E A, KONG H H. The skin microbiome in pediatric atopic dermatitis and food allergy. Allergy, 2024, 79(6): 1470-1484.
doi: 10.1111/all.16044
pmid: 38308490
|
| [4] |
SONG Y D, MA Q H, LUO J C, YANG Z F, LI J Q, ZHAO J. Liushen Wan alleviates the virulence and inflammation of Staphylococcus aureus via NLRP3 inflammasome and TLR2-NF-κB/p38 MAPK signaling pathways. International Immunopharmacology, 2025, 144: 113633.
doi: 10.1016/j.intimp.2024.113633
|
| [5] |
AHMAD-MANSOUR N, LOUBET P, POUGET C, DUNYACH- REMY C, SOTTO A, LAVIGNE J P, MOLLE V. Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments. Toxins, 2021, 13(10): 677.
doi: 10.3390/toxins13100677
|
| [6] |
PIEWNGAM P, OTTO M. Staphylococcus aureus colonisation and strategies for decolonisation. The Lancet Microbe, 2024, 5(6): e606-e618.
doi: 10.1016/S2666-5247(24)00040-5
|
| [7] |
PIDWILL G R, GIBSON J F, COLE J, RENSHAW S A, FOSTER S J. The role of macrophages in Staphylococcus aureus infection. Frontiers in Immunology, 2021, 11: 620339.
doi: 10.3389/fimmu.2020.620339
|
| [8] |
BERTRAND B P, SHINDE D, THOMAS V C, IBBERSON C B, KIELIAN T. Metabolic diversity of human macrophages: potential influence on Staphylococcus aureus intracellular survival. Infection and Immunity, 2024, 92(2): e00474-23.
|
| [9] |
|
|
XU L, YU J L, LIU L, DENG G C, WU X L. lincRNA Cox2 regulates BCG-infected macrophages glycolysis by mi R-129-5p/AMPK. Scientia Agricultura Sinica, 2024, 57(8): 1606-1619. doi: 10.3864/j.issn.0578-1752.2024.08.014. (in Chinese)
|
| [10] |
SCHERR T D, ROUX C M, HANKE M L, ANGLE A, DUNMAN P M, KIELIAN T. Global transcriptome analysis of Staphylococcus aureus biofilms in response to innate immune cells. Infection and Immunity, 2013, 81(12): 4363-4376.
doi: 10.1128/IAI.00819-13
|
| [11] |
PEYRUSSON F, TULKENS P M, VAN BAMBEKE F. Cellular pharmacokinetics and intracellular activity of gepotidacin against Staphylococcus aureus isolates with different resistance phenotypes in models of cultured phagocytic cells. Antimicrobial Agents and Chemotherapy, 2018, 62(4): e02245-17.
|
| [12] |
PEYRUSSON F, VARET H, NGUYEN T K, LEGENDRE R, SISMEIRO O, COPPÉE J Y, WOLZ C, TENSON T, VAN BAMBEKE F. Intracellular Staphylococcus aureus persisters upon antibiotic exposure. Nature Communications, 2020, 11: 2200.
doi: 10.1038/s41467-020-15966-7
|
| [13] |
YUE J C, LÓPEZ J M. Understanding MAPK signaling pathways in apoptosis. International Journal of Molecular Sciences, 2020, 21(7): 2346.
doi: 10.3390/ijms21072346
|
| [14] |
WANG X Z, LI H Y, WANG J, XU H L, XUE K, LIU X T, ZHANG Z Z, LIU J Z, LIU Y X. Staphylococcus aureus extracellular vesicles induce apoptosis and restrain mitophagy-mediated degradation of damaged mitochondria. Microbiological Research, 2023, 273: 127421.
doi: 10.1016/j.micres.2023.127421
|
| [15] |
LIU K, MAO W, LIU B, LI T T, WU J D, FU C Q, SHEN Y, PEI L, CAO J S. Live S. aureus and heat-killed S. aureus induce different inflammation-associated factors in bovine endometrial tissue in vitro. Molecular Immunology, 2021, 139: 123-130.
doi: 10.1016/j.molimm.2021.07.015
|
| [16] |
OU J X, LI K X, YUAN H, DU S H, WANG T T, DENG Q N, WU H M, ZENG W Y, CHENG K, NANDAKUMAR K S. Staphylococcus aureus vesicles impair cutaneous wound healing through p38 MAPK- MerTK cleavage-mediated inhibition of macrophage efferocytosis. Cell Communication and Signaling, 2025, 23(1): 14.
doi: 10.1186/s12964-024-01994-z
|
| [17] |
CAO W Y, LI J H, YANG K P, CAO D L. An overview of autophagy: Mechanism, regulation and research progress. Bulletin Du Cancer, 2021, 108(3): 304-322.
doi: 10.1016/j.bulcan.2020.11.004
pmid: 33423775
|
| [18] |
YEUNG Y T, AZIZ F, GUERRERO-CASTILLA A, ARGUELLES S. Signaling pathways in inflammation and anti-inflammatory therapies. Current Pharmaceutical Design, 2018, 24(14): 1449-1484.
doi: 10.2174/1381612824666180327165604
pmid: 29589535
|
| [19] |
于嘉霖. 脂肪酸结合蛋白4对BCG诱导巨噬细胞凋亡的调控作用[D]. 银川: 宁夏大学, 2020.
|
|
YU J L. Role of fatty acid binding protein 4 in regulating apoptosis of macrophage induced by Bacillus Calmette-Guerin infection[D]. Yinchuan: Ningxia University, 2020. (in Chinese)
|
| [20] |
HUANG S, MENG Q C, MAMINSKA A, MACMICKING J D. Cell-autonomous immunity by IFN-induced GBPs in animals and plants. Current Opinion in Immunology, 2019, 60: 71-80.
doi: S0952-7915(19)30033-0
pmid: 31176142
|
| [21] |
BRITZEN-LAURENT N, LIPNIK K, OCKER M, NASCHBERGER E, SCHELLERER V S, CRONER R S, VIETH M, WALDNER M, STEINBERG P, HOHENADL C, STÜRZL M. GBP-1 acts as a tumor suppressor in colorectal cancer cells. Carcinogenesis, 2013, 34(1): 153-162.
doi: 10.1093/carcin/bgs310
|
| [22] |
LIU P F, CHEN H C, SHU C W, SIE H C, LEE C H, LIOU H H, CHENG J T, TSAI K W, GER L P. Guanylate-binding protein 6 is a novel biomarker for tumorigenesis and prognosis in tongue squamous cell carcinoma. Clinical Oral Investigations, 2020, 24(8): 2673-2682.
doi: 10.1007/s00784-019-03129-y
|
| [23] |
XU H, SUN L L, ZHENG Y W, YU S Y, OU-YANG J, HAN H, DAI X L, YU X T, LI M, LAN Q. GBP3 promotes glioma cell proliferation via SQSTM1/p62-ERK1/2 axis. Biochemical and Biophysical Research Communications, 2018, 495(1): 446-453.
doi: 10.1016/j.bbrc.2017.11.050
|
| [24] |
LIU B, HUANG R F, FU T T, HE P, DU C Y, ZHOU W, XU K, REN T. GBP2 as a potential prognostic biomarker in pancreatic adenocarcinoma. PeerJ, 2021, 9: e11423.
|
| [25] |
WANG Y F, PAN J D, AN F M, CHEN K, CHEN J W, NIE H, ZHU Y P, QIAN Z T, ZHAN Q. GBP2 is a prognostic biomarker and associated with immunotherapeutic responses in gastric cancer. BMC Cancer, 2023, 23(1): 925.
doi: 10.1186/s12885-023-11308-0
pmid: 37784054
|
| [26] |
ZHANG W D, TANG X, PENG Y, XU Y K, LIU L, LIU S C. GBP2 enhances paclitaxel sensitivity in triple-negative breast cancer by promoting autophagy in combination with ATG2 and inhibiting the PI3K/AKT/mTOR pathway. International Journal of Oncology, 2024, 64(4): 34.
doi: 10.3892/ijo
|
| [27] |
REN Y Q, YANG B, GUO G, ZHANG J P, SUN Y Q, LIU D, GUO S H, WU Y Q, WANG X G, WANG S L, et al. GBP2 facilitates the progression of glioma via regulation of KIF22/EGFR signaling. Cell Death Discovery, 2022, 8: 208.
doi: 10.1038/s41420-022-01018-0
|
| [28] |
DAI F, ZHANG X Y, MA G L, LI W. ACOD 1 mediates Staphylococcus aureus-induced inflammatory response via the TLR4/NF-κB signaling pathway. International Immunopharmacology, 2024, 140: 112924.
doi: 10.1016/j.intimp.2024.112924
|
| [29] |
|
|
WANG W, LUO C H, JIA H D, LIU J J, LI D Y, FU S X. Effect of gln on endoplasmic reticulum stress in retained fetal membranes cows under oxidative stress via the PI3K/AKT pathway. Scientia Agricultura Sinica, 2025, 58(7): 1451-1462. doi: 10.3864/j.issn.0578-1752.2025.07.015. (in Chinese)
|
| [30] |
ZHU Z H, HU Z, LI S W, FANG R D, ONO H K, HU D L. Molecular characteristics and pathogenicity of Staphylococcus aureus exotoxins. International Journal of Molecular Sciences, 2023, 25(1): 395.
doi: 10.3390/ijms25010395
|
| [31] |
WANG X G, LEE J C. Staphylococcus aureus membrane vesicles: an evolving story. Trends in Microbiology, 2024, 32(11): 1096-1105.
doi: 10.1016/j.tim.2024.04.003
|
| [32] |
NAGATA S. Apoptisis and clearance of apoptotic cells. Annual Review of Immunology, 2018, 36: 489-517.
doi: 10.1146/immunol.2018.36.issue-1
|
| [33] |
ZHANG X P, HU X M, RAO X C. Apoptosis induced by Staphylococcus aureus toxins. Microbiological Research, 2017, 205: 19-24.
doi: 10.1016/j.micres.2017.08.006
|
| [34] |
TAM K, TORRES V J. Staphylococcus aureus Secreted toxins and extracellular enzymes. Microbiology Spectrum, 2019, 7(2): 7.2.16.
|
| [35] |
ENOSI TUIPULOTU D, FENG S Y, PANDEY A, ZHAO A Y, NGO C, MATHUR A, LEE J, SHEN C, FOX D, XUE Y S, et al. Immunity against Moraxella catarrhalis requires guanylate-binding proteins and caspase-11-NLRP 3 inflammasomes. The EMBO Journal, 2023, 42(6): e112558.
doi: 10.15252/embj.2022112558
|
| [36] |
DU C H, WU Y D, YANG K, LIAO W N, RAN L, LIU C N, ZHANG S Z, YU K, CHEN J, QUAN Y, et al. Apoptosis-resistant megakaryocytes produce large and hyperreactive platelets in response to radiation injury. Military Medical Research, 2023, 10: 66.
doi: 10.1186/s40779-023-00499-z
|
| [37] |
MIAO Q, GE M H, HUANG L L. Up-regulation of GBP2 is associated with neuronal apoptosis in rat brain cortex following traumatic brain injury. Neurochemical Research, 2017, 42(5): 1515-1523.
doi: 10.1007/s11064-017-2208-x
pmid: 28239766
|
| [38] |
王健宏. 鸟苷酸结合蛋白1对BCG诱导的巨噬细胞凋亡的调控作用[D]. 银川: 宁夏大学, 2021.
|
|
WANG J H. Role of guanylate binding protein 1 in regulating apoptosis of macrophage induced by Bacillus Calmette-guérin infection[D]. Yinchuan: Ningxia University, 2021. (in Chinese)
|