[1] |
黎舒佳, 高谨, 李家洋, 王永红. 独脚金内酯调控水稻分蘖的研究进展. 植物学报, 2015, 50(5): 539-548.
doi: 10.11983/CBB15076
|
|
LI S J, GAO J, LI J Y, WANG Y H. Advances in regulating rice tillers by strigolactones. Chinese Bulletin of Botany, 2015, 50(5): 539-548. (in Chinese)
|
[2] |
邓宏中, 王彩红, 徐群, 袁筱萍, 冯跃, 余汉勇, 王一平, 魏兴华. 中国水稻地方品种与选育品种的遗传多样性比较分析. 植物遗传资源学报, 2015, 16(3): 433-442.
doi: 10.13430/j.cnki.jpgr.2015.03.001
|
|
DENG H Z, WANG C H, XU Q, YUAN X P, FENG Y, YU H Y, WANG Y P, WEI X H. Comparative analysis of genetic diversity in Landrace and improved rice varieties in China. Journal of Plant Genetic Resources, 2015, 16(3): 433-442. (in Chinese)
|
[3] |
简六梅, 肖英杰, 严建兵. 从头驯化: 作物品种设计与培育的新方向. 遗传, 2023, 45(9): 741-753.
|
|
JIAN L M, XIAO Y J, YAN J B. De novo domestication: A new way for crop design and breeding. Hereditas (Beijing), 2023, 45(9): 741-753. (in Chinese)
|
[4] |
张学勇, 马琳, 郑军. 作物驯化和品种改良所选择的关键基因及其特点. 作物学报, 2017, 43(2): 157-170.
|
|
ZHANG X Y, MA L, ZHENG J. Characteristics of genes selected by domestication and intensive breeding in crop plants. Acta Agronomica Sinica, 2017, 43(2): 157-170. (in Chinese)
|
[5] |
WAN X Y, WU S W, LI X. Breeding with dominant genic male-sterility genes to boost crop grain yield in the post-heterosis utilization era. Molecular Plant, 2021, 14(4): 531-534.
|
[6] |
黄显波, 田志宏, 邓则勤, 郑家团, 林成豹, 唐江霞. 水稻三明显性核不育基因的初步鉴定. 作物学报, 2008, 34(10): 1865-1868.
doi: 10.3724/SP.J.1006.2008.01865
|
|
HUANG X B, TIAN Z H, DENG Z Q, ZHENG J T, LIN C B, TANG J X. Preliminary identification of a novel Sanming dominant male sterile gene in rice (Oryza sativa L.). Acta Agronomica Sinica, 2008, 34(10): 1865-1868. (in Chinese)
|
[7] |
杨泽茂, 谢小芳, 黄显波, 王丰青, 童治军, 段远霖, 兰涛, 吴为人. 水稻“三明” 显性核不育基因的定位. 遗传, 2012, 34(5): 615-620.
|
|
YANG Z M, XIE X F, HUANG X B, WANG F Q, TONG Z J, DUAN Y L, LAN T, WU W R. Mapping of Sanming dominant genic male sterility gene in rice. Hereditas, 2012, 34(5): 615-620. (in Chinese)
|
[8] |
YANG Y C, ZHANG C, LI H, YANG Z Y, XU Z T, TAI D W, NI D H, WEI P C, YI C X, YANG J B, DING Y. An epi-allele of SMS causes Sanming dominant genic male sterility in rice. Science China Life Sciences, 2023, 66(12): 2701-2710.
|
[9] |
XU C H, XU Y F, WANG Z J, ZHANG X Y, WU Y Y, LU X Y, SUN H W, WANG L, ZHANG Q L, ZHANG Q H, et al. Spontaneous movement of a retrotransposon generated genic dominant male sterility providing a useful tool for rice breeding. National Science Review, 2023, 10(9): nwad210.
|
[10] |
张安宁, 王飞名, 罗星星, 刘毅, 张分云, 刘国兰, 余新桥, 罗利军. 节水抗旱稻显性核不育轮回选择群体构建与种质创新. 上海农业学报, 2022, 38(4): 91-95.
|
|
ZHANG A N, WANG F M, LUO X X, LIU Y, ZHANG F Y, LIU G L, YU X Q, LUO L J. Germplasm enhancement of water-saving and drought-resistance rice based on recurrent selection facilitated by dominant nucleus male sterility. Acta Agriculturae Shanghai, 2022, 38(4): 91-95. (in Chinese)
|
[11] |
邓则勤, 黄显波, 林成豹, 唐江霞, 叶仰东, 苏荣理, 梁水金. 以三明显性核不育系转导稻瘟病抗性基因Pi9改良恢复系的效果. 福建农业学报, 2020, 35(1): 6-12.
|
|
DENG Z Q, HUANG X B, LIN C B, TANG J X, YE Y D, SU R L, LIANG S J. Improvement of disease-resistance of restorer rice lines by transducing genes Pi9 onto Sanming dominant male sterile lines. Fujian Journal of Agricultural Sciences, 2020, 35(1): 6-12. (in Chinese)
|
[12] |
刘进, 胡佳晓, 马小定, 陈武, 勒思, Jo Sumin, 崔迪, 周慧颖, 张立娜, Shin Dongjin, 黎毛毛, 韩龙植, 余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位. 中国农业科学, 2022, 55(22): 4327-4341. doi: 10.3864/j.issn.0578-1752.2022.22.001.
|
|
LIU J, HU J X, MA X D, CHEN W, LE S, SUMIN J, CUI D, ZHOU H Y, ZHANG L N, DONGJIN S, LI M M, HAN L Z, YU L Q. Construction of high density genetic map for RIL population and QTL analysis of heat tolerance at seedling stage in rice ( Oryza sativa L.). Scientia Agricultura Sinica, 2022, 55(22): 4327-4341. doi: 10.3864/ j.issn.0578-1752.2022.22.001. (in Chinese)
|
[13] |
YE C R, TENORIO F A, REDOÑA E D, MORALES-CORTEZANO P S, CABREGA G A, JAGADISH K S V, GREGORIO G B. Fine-mapping and validating qHTSF4.1 to increase spikelet fertility under heat stress at flowering in rice. Theoretical and Applied Genetics, 2015, 128(8): 1507-1517.
doi: 10.1007/s00122-015-2526-9
pmid: 25957114
|
[14] |
PS S, SV A M, PRAKASH C, MK R, TIWARI R, MOHAPATRA T, SINGH N K. High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP array. Rice, 2017, 10(1): 28.
doi: 10.1186/s12284-017-0167-0
pmid: 28584974
|
[15] |
张昌泉, 陈飞, 洪燃, 李钱峰, 顾铭洪, 刘巧泉. 利用染色体片段代换系定位水稻抽穗开花期耐热性QTL. 江苏农业科学, 2016, 44(12): 120-123.
|
|
ZHANG C Q, CHEN F, HONG R, LI Q F, GU M H, LIU Q Q. Mapping QTL for heat tolerance at heading and flowering stage of rice by chromosome fragment substitution lines. Jiangsu Agricultural Sciences, 2016, 44(12): 120-123. (in Chinese)
|
[16] |
赵志刚, 江玲, 肖应辉, 张文伟, 翟虎渠, 万建民. 水稻孕穗期耐热性QTLs分析. 作物学报, 2006, 32(5): 640-644.
|
|
ZHAO Z G, JIANG L, XIAO Y H, ZHANG W W, ZHAI H Q, WAN J M. Identification of QTLs for heat tolerance at the booting stage in rice (Oryza sativa L.). Acta Agronomica Sinica, 2006, 32(5): 640-644. (in Chinese)
|
[17] |
KILASI N L, SINGH J, VALLEJOS C E, YE C R, JAGADISH S V K, KUSOLWA P, RATHINASABAPATHI B. Heat stress tolerance in rice (Oryza sativa L.): Identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Frontiers in Plant Science, 2018, 9: 1578.
|
[18] |
LEI D Y, TAN L B, LIU F X, CHEN L Y, SUN C Q. Identification of heat-sensitive QTL derived from common wild rice (Oryza rufipogon Griff.). Plant Science, 2013, 201: 121-127.
|
[19] |
LI M M, LI X, YU L Q, WU J W, LI H, LIU J, MA X D, JO S M, PARK D S, SONG Y C, SHIN D, HAN L Z. Identification of QTLs associated with heat tolerance at the heading and flowering stage in rice (Oryza sativa L.). Euphytica, 2018, 214(4): 70.
|
[20] |
POLI Y, BASAVA R K, PANIGRAHY M, VINUKONDA V P, DOKULA N R, VOLETI S R, DESIRAJU S, NEELAMRAJU S. Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice, 2013, 6(1): 36.
doi: 10.1186/1939-8433-6-36
pmid: 24295086
|
[21] |
TAZIB T, KOBAYASHI Y, KOYAMA H, MATSUI T. QTL analyses for anther length and dehiscence at flowering as traits for the tolerance of extreme temperatures in rice (Oryza sativa L.). Euphytica, 2015, 203(3): 629-642.
|
[22] |
|
|
LIU G, XIA K F, WU Y, ZHANG M Y, ZHANG Z J, YANG J S, QIU D F. Breeding and application of a new thermo-tolerance rice germplasm R203. Scientia Agricultura Sinica, 2023, 56(3): 405-415. doi: 10.3864/j.issn.0578-1752.2023.03.001. (in Chinese)
|
[23] |
杨扬, 谢震泽, 王轲, 晏月明. 水稻香味的遗传研究进展. 首都师范大学学报(自然科学版), 2010, 31(3): 24-29.
|
|
YANG Y, XIE Z Z, WANG K, YAN Y M. Advance in genetic studies on aromatic rice. Journal of Capital Normal University (Natural Science Edition), 2010, 31(3): 24-29. (in Chinese)
|
[24] |
张来桐, 杨乐, 刘洪, 赵学明, 程涛, 徐振江. 水稻香味物质的研究进展. 中国水稻科学, 2025, 39(2): 171-186.
doi: 10.16819/j.1001-7216.2025.240301
|
|
ZHANG L T, YANG L, LIU H, ZHAO X M, CHENG T, XU Z J. Research advances of fragrance substances in rice. Chinese Journal of Rice Science, 2025, 39(2): 171-186. (in Chinese)
doi: 10.16819/j.1001-7216.2025.240301
|
[25] |
张倩倩, 殷春渊, 刘贺梅, 胡秀明, 孟利红, 王和乐, 张金霞, 田芳慧, 袁泽科, 孙建权, 王书玉. 48份水稻骨干材料香味及Badh2变异类型的鉴定. 种子, 2024, 43(1): 107-113.
|
|
ZHANG Q Q, YIN C Y, LIU H M, HU X M, MENG L H, WANG H L, ZHANG J X, TIAN F H, YUAN Z K, SUN J Q, WANG S Y. Identification of fragrance and Badh2 variant types in 48 Oryza sativa L. backbone materials. Seed, 2024, 43(1): 107-113. (in Chinese)
|
[26] |
王占春, 钟桂涛, 张贝贝, 谢怡琳, 唐定中, 王伟. 水稻稻瘟病抗性基因研究进展. 遗传, 2025, 47(5): 533-545.
|
|
WANG Z C, ZHONG G T, ZHANG B B, XIE Y L, TANG D Z, WANG W. Research advances in rice blast resistance genes. Hereditas (Beijing), 2025, 47(5): 533-545. (in Chinese)
|
[27] |
肖宁, 吴云雨, 王如意, 赵均良, 余玲, 高鹏, 郝泽芸, 宁约瑟, 李爱宏. 水稻抗稻瘟病基因克隆及其育种应用研究进展. 生命科学, 2025, 37(5): 558-566.
|
|
XIAO N, WU Y Y, WANG R Y, ZHAO J L, YU L, GAO P, HAO Z Y, NING Y S, LI A H. Advancements in cloning of rice blast resistance genes and their application in breeding. Chinese Bulletin of Life Sciences, 2025, 37(5): 558-566. (in Chinese)
|
[28] |
TAMURA K, NEI M, KUMAR S.Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11030-11035.
|
[29] |
KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054
pmid: 27004904
|
[30] |
|
|
QIU D F, GE P J, LIU G, YANG J S, CHEN J G, ZHANG Z J. Breeding and evaluation of elite rice line ZY56. Scientia Agricultura Sinica, 2021, 54(6): 1081-1091. doi: 10.3864/j.issn.0578-1752.2021.06.001. (in Chinese)
|
[31] |
査中萍, 殷得所, 万丙良, 焦春海. 水稻种质资源开花期耐热性分析. 湖北农业科学, 2016, 55(1): 17-19, 23.
|
|
ZHA Z P, YIN D S, WAN B L, JIAO C H. Analyzing of rice germplasm heat resistance during flowering stage. Hubei Agricultural Sciences, 2016, 55(1): 17-19, 23. (in Chinese)
|
[32] |
胡声博, 张玉屏, 朱德峰, 林贤青, 向镜. 杂交水稻耐热性评价. 中国水稻科学, 2012, 26(6):751-756.
|
|
HU S B, ZHANG Y P, ZHU D F, LIN X Q, XIANG J. Evaluation of heat resistance in hybrid rice. Chinese Journal of Rice Science, 2012, 26(6):751-756. (in Chinese)
|
[33] |
贾子苗, 邱玉亮, 林志珊, 王轲, 叶兴国. 利用近缘种属优良基因改良小麦研究进展. 作物杂志, 2021(2): 1-14.
|
|
JIA Z M, QIU Y L, LIN Z S, WANG K, YE X G. Research progress on wheat improvement by using desirable genes from its relative species. Crops, 2021(2): 1-14. (in Chinese)
|
[34] |
LIU Y Y, SHEN K C, YIN C B, XU X W, YU X C, YE B T, SUN Z W, DONG J Y, BI A Y, ZHAO X B, et al. Genetic basis of geographical differentiation and breeding selection for wheat plant architecture traits. Genome Biology, 2023, 24(1): 114.
doi: 10.1186/s13059-023-02932-x
pmid: 37173729
|