[1] |
SÁNCHEZ-CORDÓN P J, MONTOYA M, REIS A L, DIXON L K. African swine fever: A re-emerging viral disease threatening the global pig industry. The Veterinary Journal, 2018, 233: 41-48.
|
[2] |
LI Z Y, CHEN W X, QIU Z L, LI Y W, FAN J D, WU K K, LI X W, ZHAO M Q, DING H X, FAN S Q, CHEN J D. African swine fever virus: A review. Life, 2022, 12(8): 1255.
|
[3] |
DIXON L K, SUN H, ROBERTS H. African swine fever. Antiviral Research, 2019, 165: 34-41.
doi: S0166-3542(19)30096-8
pmid: 30836106
|
[4] |
SÁNCHEZ-VIZCAÍNO J M, MUR L, MARTÍNEZ-LÓPEZ B. African swine fever (ASF): Five years around Europe. Veterinary Microbiology, 2013, 165(1/2): 45-50.
|
[5] |
|
|
FENG C Y, ZHANG Z X, LIU Y F, HUANG L, WENG C J. Preparation of monoclonal antibody againstafrican swine fever virus P54 protein and identification of its epitope. Scientia Agricultura Sinica, 2024, 57(19): 3936-3944. doi: 10.3864/j.issn.0578-1752.2024.19.015. (in Chinese)
|
[6] |
|
|
LUO Y Z, SUN Y, WANG T, QIU H J. African swine fever: A major threat to the Chinese swine industry. Scientia Agricultura Sinica, 2018, 51(21): 4177-4187. doi: 10.3864/j.issn.0578-1752.2018.21.016. (in Chinese)
|
[7] |
DIXON L K, CHAPMAN D A G, NETHERTON C L, UPTON C. African swine fever virus replication and genomics. Virus Research, 2013, 173(1): 3-14.
doi: 10.1016/j.virusres.2012.10.020
pmid: 23142553
|
[8] |
REVILLA Y, PÉREZ-NÚÑEZ D, RICHT J A. African swine fever virus biology and vaccine approaches. Advances in Virus Research. Amsterdam: Elsevier, 2018: 41-74.
|
[9] |
WANG Y, KANG W F, YANG W P, ZHANG J, LI D, ZHENG H X. Structure of African swine fever virus and associated molecular mechanisms underlying infection and immunosuppression: A review. Frontiers in Immunology, 2021, 12: 715582.
|
[10] |
WANG G G, XIE M J, WU W, CHEN Z Z. Structures and functional diversities of ASFV proteins. Viruses, 2021, 13(11): 2124.
|
[11] |
CHEN H, WANG Z Z, GAO X Y, LV J X, HU Y X, JUNG Y S, ZHU S Y, WU X D, QIAN Y J, DAI J J. ASFV pD345L protein negatively regulates NF-κB signalling by inhibiting IKK kinase activity. Veterinary Research, 2022, 53(1): 32.
doi: 10.1186/s13567-022-01050-z
pmid: 35461299
|
[12] |
WANG Z Y, AI Q Y, HUANG S L, OU Y T, GAO Y Z, TONG T Z, FAN H Y. Immune escape mechanism and vaccine research progress of African swine fever virus. Vaccines, 2022, 10(3): 344.
|
[13] |
LI L, FU J Y, LI J X, GUO S B, CHEN Q C, ZHANG Y B, LIU Z K, TAN C, CHEN H C, WANG X R. African swine fever virus pI215L inhibits type I interferon signaling by targeting interferon regulatory factor 9 for autophagic degradation. Journal of Virology, 2022, 96(17): e0094422.
|
[14] |
LIU H S, ZHU Z X, FENG T, MA Z, XUE Q, WU P X, LI P, LI S S, YANG F, CAO W J, XUE Z N, CHEN H J, LIU X T, ZHENG H X. African swine fever virus E120R protein inhibits interferon beta production by interacting with IRF3 to block its activation. Journal of Virology, 2021, 95(18): e0082421.
|
[15] |
CHEN S, ZHANG X H, NIE Y, LI H X, CHEN W G, LIN W C, CHEN F, XIE Q M. African swine fever virus protein E199L promotes cell autophagy through the interaction of PYCR2. Virologica Sinica, 2021, 36(2): 196-206.
doi: 10.1007/s12250-021-00375-x
pmid: 33830435
|
[16] |
WANG T, LUO R, ZHANG J, LU Z H, LI L F, ZHENG Y H, PAN L, LAN J, ZHAI H J, HUANG S J, SUN Y, QIU H J. The MGF300-2R protein of African swine fever virus is associated with viral pathogenicity by promoting the autophagic degradation of IKKα and IKKβ through the recruitment of TOLLIP. PLoS Pathogens, 2023, 19(8): e1011580.
|
[17] |
GAO Q, YANG Y L, LUO Y Z, CHEN X N, GONG T, WU D D, FENG Y Z, ZHENG X Y, WANG H, ZHANG G H, LU G, GONG L. African swine fever virus envelope glycoprotein CD2v interacts with host CSF2RA to regulate the JAK2-STAT3 pathway and inhibit apoptosis to facilitate virus replication. Journal of Virology, 2023, 97(4): e0188922.
|
[18] |
TRAN X H, LE T T P, NGUYEN Q H, DO T T, NGUYEN V D, GAY C G, BORCA M V, GLADUE D P. African swine fever virus vaccine candidate ASFV-G-ΔI177L efficiently protects European and native pig breeds against circulating Vietnamese field strain. Transboundary and Emerging Diseases, 2022, 69(4): e497-e504.
|
[19] |
|
|
WANG T, LUO R, SUN Y, QIU H J. Development strategies and application prospects of African swine fever vaccines: Feasibility and Probability. Scientia Agricultura Sinica, 2023, 56(11): 2212-2222. doi: 10.3864/j.issn.0578-1752.2023.11.014. (in Chinese)
|
[20] |
BORCA M V, RAMIREZ-MEDINA E, SILVA E, RAI A, ESPINOZA N, VELAZQUEZ-SALINAS L, GLADUE D P. ASF vaccine candidate ASFV-G-∆I177L does not exhibit residual virulence in long- term clinical studies. Pathogens, 2023, 12(6): 805.
|
[21] |
CHATHURANGA K, LEE J S. African swine fever virus (ASFV): immunity and vaccine development. Vaccines, 2023, 11(2): 199.
|
[22] |
SONG J X, WANG M X, ZHOU L, TIAN P P, SUN Z Y, SUN J R, WANG X N, ZHUANG G Q, JIANG D W, WU Y N, ZHANG G P. A candidate nanoparticle vaccine comprised of multiple epitopes of the African swine fever virus elicits a robust immune response. Journal of Nanobiotechnology, 2023, 21(1): 424.
doi: 10.1186/s12951-023-02210-9
pmid: 37964304
|
[23] |
HUANG L, CHEN W Y, LIU H Y, XUE M D, DONG S Q, LIU X H, FENG C Y, CAO S N, YE G Q, ZHOU Q Q, et al. African swine fever virus HLJ/ 18 CD2v suppresses type I IFN production and IFN- stimulated genes expression through negatively regulating cGMP- AMP synthase-STING and IFN signaling pathways. The Journal of Immunology, 2023, 210(9): 1338-1350.
|
[24] |
LIU X H, CHEN H F, YE G Q, LIU H Y, FENG C Y, CHEN W Y, HU L, ZHOU Q Q, ZHANG Z X, LI J N, et al. African swine fever virus pB318L, a trans-geranylgeranyl-diphosphate synthase, negatively regulates cGAS-STING and IFNAR-JAK-STAT signaling pathways. PLoS Pathogens, 2024, 20(4): e1012136.
|
[25] |
YE G Q, LIU H Y, LIU X H, CHEN W Y, LI J N, ZHAO D M, WANG G, FENG C Y, ZHANG Z X, ZHOU Q Q, et al. African swine fever virus H240R protein inhibits the production of type I interferon through disrupting the oligomerization of STING. Journal of Virology, 2023, 97(9): e0057723.
|
[26] |
ANTONIA R J, HAGAN R S, BALDWIN A S. Expanding the view of IKK: New substrates and new biology. Trends in Cell Biology, 2021, 31(3): 166-178.
doi: 10.1016/j.tcb.2020.12.003
pmid: 33422358
|
[27] |
TAMIMI A, TAMIMI A, SORKHEH F, ASL S M, GHAFARI A, KARIMI A G, ERABI G, POURMONTASERI H, DERAVI N. Monoclonal antibodies for the treatment of squamous cell carcinoma: A literature review. Cancer Reports, 2023, 6(5): e1802.
|
[28] |
JIN J, SIMMONS G. Antiviral functions of monoclonal antibodies against chikungunya virus. Viruses, 2019, 11(4): 305.
|
[29] |
XIANG R, WANG Y, WANG L L, DENG X Q, HUO S S, JIANG S B, YU F. Neutralizing monoclonal antibodies against highly pathogenic coronaviruses. Current Opinion in Virology, 2022, 53: 101199.
|
[30] |
TSAO L C, FORCE J, HARTMAN Z C. Mechanisms of therapeutic antitumor monoclonal antibodies. Cancer Research, 2021, 81(18): 4641-4651.
|