[1] |
ZAFAR S, LI Y L, LI N N, ZHU K M, TAN X L. Recent advances in enhancement of oil content in oilseed crops. Journal of Biotechnology, 2019, 301: 35-44.
doi: S0168-1656(19)30471-7
pmid: 31158409
|
[2] |
PAN Y J, JIN W P, HUANG Q R. Structure, assembly and application of novel peanut oil body protein extracts nanoparticles. Food Chemistry, 2022, 367: 130678.
|
[3] |
范世航, 刘念, 华玮. 油料作物油脂合成调控研究进展. 中国油料作物学报, 2021, 43(3): 361-375.
|
|
FAN S H, LIU N, HUA W. Research advances in the biosynthesis and regulation of lipid in oil crops. Chinese Journal of Oil Crop Sciences, 2021, 43(3): 361-375. (in Chinese)
doi: 10.19802/j.issn.1007-9084.2021097
|
[4] |
TZEN J T C, CAO Y Z, LAURENT P, RATNAYAKE C, HUANG A H C. Lipids, proteins, and structure of seed oil bodies from diverse species. Plant Physiology, 1993, 101(1): 267-276.
doi: 10.1104/pp.101.1.267
pmid: 12231682
|
[5] |
ABDULLAH, WEISS J, ZHANG H. Recent advances in the composition, extraction and food applications of plant-derived oleosomes. Trends in Food Science & Technology, 2020, 106: 322-332.
|
[6] |
ZAABOUL F, ZHAO Q L, XU Y J, LIU Y F. Soybean oil bodies: a review on composition, properties, food applications, and future research aspects. Food Hydrocolloids, 2022, 124: 107296.
|
[7] |
BATOOL M, EL-BADRI A M, WANG C Y, MOHAMED I A A, WANG Z K, KHATAB A, BASHIR F, XU Z H, WANG J, KUAI J, WANG B, ZHOU G S. The role of storage reserves and their mobilization during seed germination under drought stress conditions of rapeseed cultivars with high and low oli contents. Crop and Environment, 2022, 1(4): 231-240.
|
[8] |
傅丽霞, 瞿波. 不同含油量油菜种子子叶贮藏细胞内脂体和蛋白体超微结构的研究. 华中农业大学学报, 1993, 12(6): 556-560, 632.
|
|
FU L X, QU B. Studies on the ultrastructure of oily bodies and protein bodies in the cotyledon storage cell of mature seeds in rapeseed. Journal of Huazhong Agricultural, 1993, 12(6): 556-560, 632. (in Chinese)
|
[9] |
殷冬梅, 宋佳静, 张幸果, 李贺敏, 王允, 崔党群. 花生种子在不同发育时期的显微结构分析. 核农学报, 2013, 27(3): 344-349.
doi: 10.11869/hnxb.2013.03.0344
|
|
YIN D M, SONG J J, ZHANG X G, LI H M, WANG Y, CUI D Q. Microstructure of peanut seeds at different developmental stages. Journal of Nuclear Agricultural Sciences, 2013, 27(3): 344-349. (in Chinese)
|
[10] |
ABBAS M, EL-SHABRAWI H, HAMZA M, WAHBA H, SHAHBA M. Association between productivity, fatty acid profiles, oil bodies’ ultrastructure and molecular markers in peanut (Arachis hypogaea L.) cultivars. Agronomy, 2020, 10(9): 1401.
|
[11] |
ZAABOUL F, RAZA H, CHEN C, LIU Y F. Characterization of peanut oil bodies integral proteins, lipids, and their associated phytochemicals. Journal of Food Science, 2018, 83(1): 93-100.
doi: 10.1111/1750-3841.13995
pmid: 29227542
|
[12] |
王学东, 李英, 崔琳. 大豆子叶发育过程中的显微结构变化. 电子显微学报, 2009, 28(4): 396-403.
|
|
WANG X D, LI Y, CUI L. Microstructural changes of cotyledon cells in soybean during seed development. Journal of Chinese Electron Microscopy Society, 2009, 28(4): 396-403. (in Chinese)
|
[13] |
WANG L L, CHEN Y M, LI Z G. The effects of freezing on soybean microstructure and qualities of soymilk. Journal of Food Engineering, 2013, 116(1): 1-6.
|
[14] |
周鑫, 韩宛君, 李东飞, 崔春利, 江连洲, 侯俊财. 不同油脂体结构及性质的差异. 食品科学, 2018, 39(16): 133-139.
doi: 10.7506/spkx1002-6630-201816020
|
|
ZHOU X, HAN W J, LI D F, CUI C L, JIANG L Z, HOU J C. Differences in the structure and properties of seed oil bodies from diverse oilseed crops. Food Science, 2018, 39(16): 133-139. (in Chinese)
doi: 10.7506/spkx1002-6630-201816020
|
[15] |
LOPEZ C, NOVALES B, RABESONA H, WEBER M, CHARDOT T, ANTON M. Deciphering the properties of hemp seed oil bodies for food applications: Lipid composition, microstructure, surface properties and physical stability. Food Research International, 2021, 150: 110759.
|
[16] |
CAPUANO E, PELLEGRINI N, NTONE E, NIKIFORIDIS C V. In vitro lipid digestion in raw and roasted hazelnut particles and oil bodies. Food & Function, 2018, 9(4): 2508-2516.
|
[17] |
PAYNE G, LAD M, FOSTER T, KHOSLA A, GRAY D. Composition and properties of the surface of oil bodies recovered from Echium plantagineum. Colloids and Surfaces B, Biointerfaces, 2014, 116: 88-92.
|
[18] |
DELEU M, VACA-MEDINA G, FABRE J F, ROÏZ J, VALENTIN R, MOULOUNGUI Z. Interfacial properties of oleosins and phospholipids from rapeseed for the stability of oil bodies in aqueous medium. Colloids and Surfaces B, Biointerfaces, 2010, 80(2): 125-132.
|
[19] |
HU M, DU X Q, LIU G N, TAN Z, ZHANG S, QI B K, LI Y. Investigation of structure-stability correlations of reconstructed oil bodies. Food Science & technology, 2022, 165: 113740.
|
[20] |
KATAVIC V, AGRAWAL G K, HAJDUCH M, HARRIS S L, THELEN J J. Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics, 2006, 6(16): 4586-4598.
|
[21] |
中华人民共和国国家卫生和计划生育委员会. GB5009.227—2016, 食品安全国家标准: 食品中过氧化值的测定. 北京: 中国标准出版社, 2016.
|
|
National Health and Family Planning Commission of the People's Republic of China. GB5009.227-2016, National standard for food safety-Determination of peroxide value in food. Beijing: Standards Press of China, 2016. (in Chinese)
|
[22] |
中华人民共和国国家卫生和计划生育委员会. GB5009.181—2016, 食品安全国家标准: 食品中丙二醛的测定. 北京: 中国标准出版社, 2016.
|
|
National Health and Family Planning Commission of the People's Republic of China. GB5009.181-2016, National standard for food safety - Determination of malondialdehyde in food. Beijing: Standards Press of China, 2016. (in Chinese)
|
[23] |
韦存虚, 钦风凌, 李爱民, 张永泰, 周卫东, 王幼平. 油菜种子油体的观察和大小分析. 中国油料作物学报, 2009, 31(4): 445-448.
|
|
WEI C X, QIN F L, LI A M, ZHANG Y T, ZHOU W D, WANG Y P. Oil body observation in seeds of Brassica napus L. Chinese Journal of Oil Crop Sciences, 2009, 31(4): 445-448. (in Chinese)
|
[24] |
ŞEN A, ACEVEDO-FANI A, DAVE A, YE A Q, HUSNY J, SINGH H. Plant oil bodies and their membrane components: new natural materials for food applications. Critical Reviews in Food Science and Nutrition, 2024, 64(2): 256-279.
|
[25] |
NIKIFORIDIS C V. Structure and functions of oleosomes (oil bodies). Advances in Colloid and Interface Science, 2019, 274: 102039.
|
[26] |
FEI W H, SHUI G H, ZHANG Y X, KRAHMER N, FERGUSON C, KAPTERIAN T S, LIN R C, DAWES I W, BROWN A J, LI P, HUANG X, PARTON R G, WENK M R, WALTHER T C, YANG H Y. A role for phosphatidic acid in the formation of “supersized” lipid droplets. PLoS Genetics, 2011, 7(7): e1002201.
|
[27] |
ARISAWA K, MITSUDOME H, YOSHIDA K, SUGIMOTO S, ISHIKAWA T, FUJIWARA Y, ICHI I. Saturated fatty acid in the phospholipid monolayer contributes to the formation of large lipid droplets. Biochemical and Biophysical Research Communications, 2016, 480(4): 641-647.
|
[28] |
NIKIFORIDIS C V, KIOSSEOGLOU V, SCHOLTEN E. Oil bodies: An insight on their microstructure-maize germ vs sunflower seed. Food Research International, 2013, 52(1): 136-141.
|
[29] |
YANG N, SU C X, ZHANG Y M, JIA J J, LEHENY R L, NISHINARI K, FANG Y P, PHILLIPS G O. In situ nanomechanical properties of natural oil bodies studied using atomic force microscopy. Journal of Colloid and Interface Science, 2020, 570: 362-374.
|
[30] |
CHEN M C M, CHYAN C L, LEE T T T, HUANG S H, TZEN J T C. Constitution of stable artificial oil bodies with triacylglycerol, phospholipid, and caleosin. Journal of Agricultural and Food Chemistry, 2004, 52(12): 3982-3987.
pmid: 15186126
|
[31] |
CIRRINCIONE S, AIUTO B, GOSSO E, SCHIAVONE C, PORTESI C, ROSSI A M, MONTI G, CAVALLARIN L, LAMBERTI C, GIUFFRIDA G M. Proteomic study of walnut oleosome and first evidence on oleosin sensitization in allergic patients. Journal of Food Composition and Analysis, 2023, 121: 105386.
|
[32] |
TAI S S K, CHEN M C M, PENG C C, TZEN J T C. Gene family of oleosin isoforms and their structural stabilization in sesame seed oil bodies. Bioscience, Biotechnology, and Biochemistry, 2002, 66(10): 2146-2153.
pmid: 12450125
|
[33] |
SONG S, CHEONG L Z, WANG H, MAN Q Q, PANG S J, LI Y Q, REN B, WANG Z, ZHANG J. Characterization of phospholipid profiles in six kinds of nut using HILIC-ESI-IT-TOF-MS system. Food Chemistry, 2018, 240: 1171-1178.
doi: S0308-8146(17)31339-0
pmid: 28946239
|
[34] |
BOURGEOIS C, GOMAA A I, LEFÈVRE T, CANSELL M, SUBIRADE M. Interaction of oil bodies proteins with phospholipid bilayers: A molecular level elucidation as revealed by infrared spectroscopy. International Journal of Biological Macromolecules, 2019, 122: 873-881.
doi: S0141-8130(18)33016-2
pmid: 30391431
|