中国农业科学 ›› 2014, Vol. 47 ›› Issue (6): 1119-1127.doi: 10.3864/j.issn.0578-1752.2014.06.008
周彦
收稿日期:
2013-08-14
出版日期:
2014-03-15
发布日期:
2013-11-04
作者简介:
周彦,Tel:13896052609
基金资助:
国家科技支撑计划子课题(2012BAD19B06-04)、国家公益性行业(农业)科研专项(201203076-01)、重庆市自然科学基金项目(CSTC2012jjA80029)、中央高校基本科研业务费(XDJK2014C027)
ZHOU Yan
Received:
2013-08-14
Online:
2014-03-15
Published:
2013-11-04
摘要: 植物病毒载体作为重要的研究工具被广泛运用于蛋白表达、基因沉默等研究,当前普遍使用的是以烟草花叶病毒载体等为代表的草本植物病毒载体,但其大多不能侵染果树,且稳定性较差,容易丢失插入的外源基因,因此该类载体无法满足果树等多年生植物研究的需要。近年来新兴的果树病毒载体可解决这些难题,为此作者对果树病毒载体的研究进展和发展方向进行综述。当前国内外取得的研究成果主要包括:(1)通过掌握柑橘衰退病毒、柑橘叶斑病毒、李痘病毒、苹果潜隐球形病毒、葡萄病毒A和葡萄卷叶伴随病毒等果树病毒的传播途径、寄主范围、致病力分化、基因功能和表达策略等特性,采用体外转录或农杆菌介导的方式获得了上述果树病毒的全长侵染性克隆。在此基础上,通过在病毒外壳蛋白基因与其邻近的上游基因之间插入外源基因(包括荧光蛋白基因和β-葡萄糖醛酸酶基因等报告基因),并用该病毒外壳蛋白基因的启动子或其他异源启动子驱动外源基因表达的方式,将上述6种果树病毒的全长侵染性克隆改造成为病毒载体;(2)运用果树病毒载体明确了柑橘衰退病毒、柑橘叶斑病毒、李痘病毒、苹果潜隐球形病毒和葡萄卷叶伴随病毒在植株中的分布、移动规律,及其在细胞中的定位。探寻了柑橘衰退病毒在大翼来檬上产生茎陷点症状的原因,以及交叉保护防治柑橘衰退病的主要机理。果树病毒载体还被作为病毒诱导的基因沉默载体用于基因功能和防病研究;(3)通过选用本地已经存在,且无虫传能力的弱毒株,以及对控制病毒致病和媒介传播能力的基因进行敲除、突变可以解决果树病毒载体研发过程中所遇到的安全风险。由于有些果树病毒仅分布于植株的韧皮部,因此限制了其作为病毒载体在植株中表达外源基因的范围,但由这类果树病毒构建的病毒载体稳定性极高,并且通过添加分泌信号肽基因等方式可以扩大表达产物在植株中的分布和作用范围,因此其在果树病毒研究方面仍然具有很高的应用价值。此外,采用不同病毒来源的异源启动子代替同源重复区来驱动外源基因的表达,可以进一步提高果树病毒载体的稳定性。
周彦. 果树病毒载体研究进展[J]. 中国农业科学, 2014, 47(6): 1119-1127.
ZHOU Yan. Progresses in Study of Virus-Based Vectors of Fruit Trees[J]. Scientia Agricultura Sinica, 2014, 47(6): 1119-1127.
[1]Rabindran S, Dawson W O. Assessment of recombinants that arise from the use of a TMV-based transient expression vector. Virology, 2001, 284(2): 182-189.[2]Folimonov A S, Folimonova S Y, Bar-Joseph M, Dawson W O. A stable RNA virus-based vector for citrus trees. Virology, 2007, 368(1): 205-216.[3]Ion-Nagy L, Lansac M, Eyquard J P, Salvador B, Garcia J A, Le G O, Hernould M, Schurdi-Levraud V, Decroocq V. PPV long-distance movement is occasionally permitted in resistant apricot hosts. Virus Research, 2006, 120(1/2): 70-78.[4]Folimonova S Y, F olimonov A S, Satyanarayana T, Dawson W O. Citrus tristeza virus: survival at the edge of the movement continuum. Journal of Virology, 2008, 82(13): 6546-6556.[5]Zhou Z S, Dell’Orco M, Saldarelli P, Turturo C, Minafra A, Martelli G P. Identification of an RNA-silencing suppressor in the genome of Grapevine virus A. Journal of General Virology, 2006, 87: 2387-2395.[6]Tatineni S, Dawsona W O. Enhancement or attenuation of disease by deletion of genes from Citrus tristeza virus. Journal of Virology, 2012, 86(15): 7850-7857.[7]Agüero J, Ruiz-Ruiz S, Vives M C, Velázquez K, Navarro L, Peña L, Moreno P, Guerri J. Development of viral vectors based on Citrus leaf blotch virus to express foreign proteins or analyze gene function in citrus plants. Molecular Plant-Microbe Interactions, 2012, 25(10): 1326-1337.[8]Folimonova S Y, Robertson C J, Shilts T, Folimonov A S, Hilf M E, Garnsey S M, Dawson W O. Infection with strains of Citrus tristeza virus does not exclude superinfection by other strains of the virus. Journal of Virology, 2010, 84(3): 1314-1325.[9]Igarashi A, Yamagata K, Sugai T, Takahashi Y, Sugawara E, Tamura A, Yaegashi H, Yamagishi N, Takahashi T, Isogai M, Takahashi H, Yoshikawa N. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology, 2009, 386(2): 407-416.[10]Zhou Y, Zhou C Y, Song Z, Liu K H, Yang F Y. Characterization of Citrus tristeza virus isolates by indicators and by molecular biology methods. Agricultural Sciences in China, 2007, 6(5): 101-105.[11]Zhao X Y, Zhou C Y, Tang K Z, Jiang Y H, Yang F Y, Huang S, Li T S, Liu K H, Liu Y, Chen Q Y. Preliminary evalution of the tolerance of 18 pummelo cultivars to stem-pitting tristeza//Proceedings of the 15th Conference of the International Organization of Citrus Virologist, 2002: 172-175.[12]周彦, 周常勇, 李中安, 王雪峰, 刘科宏. 利用弱毒株交叉保护技术防治甜橙茎陷点型衰退病. 中国农业科学, 2008, 41(12): 4085-4091. Zhou Y, Zhou C Y, Li Z A, Wang X F, Liu K H. Mild strains cross protection against stem-pitting tristeza of sweet orange. Scientia Agricultura Sinica, 2008, 41(12): 4085-4091. (in Chinese)[13]Broadbent P, Brlansky R H, Indsto J. Biological characterization of Australian isolates of Citrus tristeza virus and separation of subisolates by single aphid transmission. Plant Disease, 1996, 80(3): 329-333.[14]Bar-Joseph M, Marcus R, Lee R F. The continuous challenge of Citrus tristeza virus control. Annual Review of Phytopathology, 1989, 27: 291-316.[15]Karasev A V, Boyko V P, Gowda S, Nikolaeva O V, Hilf M E, Koonin E V, Niblett C L, Cline K, Gumpf D J, Lee R F, Garnsey S M, Lewandowski D J, Dawson W O. Complete sequence of the Citrus tristeza virus RNA genome. Virology, 1995, 208(2): 511-520.[16]López C, Ayllon M A, Navas-Castillo J, Moreno P, Flores R. Molecular variability of the 5-and 3-terminal regions of Citrus tristeza virus RNA. Phytopathology, 1998, 88(7): 685-691.[17]Dolja V V, Kreuze J F, Valkonen J P. Comparative and functional genomics of Closteroviruses. Virus Research, 2006, 117(1): 38-51.[18]Satyanarayana T, Gowda S, Boyko V P, Albiach-Marti M R, Mawassi M, Navas-Castillo J, Karasev A V, Dolja V, Hilf M E, Lewandowski D J, Moreno P, Bar-Joseph M, Garnsey S M. Dawson W O. An engineered closterovirus RNA replication and analysis of heterologous terminal sequences for replication. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(13): 7433-7438.[19]Gowda S, Satyanarayana T, Davis C L, Navas-Castillo J, Albiach-Marti M R, Mawassi M, Valkov N, Bar-Joseph M, Moreno P, Dawson W O. The p20 gene product of Citrus tristeza virus accumulates in the amorphous inclusion bodies. Virology, 2000, 274(2): 246-254. [20]Satyanarayana T, Gowda S, Ayllón M A, Albiach-Martí M R, Rabindran S, Dawson W O. The p23 protein of Citrus tristeza virus controls asymmetrical RNA accumulation. Journal of Virology, 2002, 76(2): 473-483.[21]Albiach-Martí M R, Robertson C, Gowda, S, Tatineni S, Belliure B, Garnsey S M, Folimonova S Y, Moreno P, Dawson W O. The pathogenicity determinant of Citrus tristeza virus causing the seedling yellows syndrome maps at the 3´-terminal region of the viral genome. Molecular Plant Pathology, 2010, 11(1): 55-67.[22]Lu R, Folimonov A, Shintaku M, Li W X, Falk B W, Dawson W O, Ding S W. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44): 15742-15747.[23]Tatineni S, Robertson C J, Garnsey S M, Bar-Joseph M, Gowda S, Dawson W O. Three genes of Citrus tristeza virus are dispensable for infection and movement throughout some varieties of citrus trees. Virology, 2008, 376(2): 297-307.[24]Tatineni S, Robertson C J, Garnsey S M, Dawson W O. A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(42): 17366-17371.[25]Ayllón M A, Gowda S, Satyanarayana T, Karasev A V, Adkins S, Mawassi M, Guerri J, Moreno P, Dawson W O. Effects of modi?cation of the transcription initiation site context on Citrus tristeza virus subgenomic RNA synthesis. Journal of Virology, 2003, 77(17): 9232-9243.[26]Ayllón M A, Satyanarayana T, Gowda S, Dawson W O. An atypical 3′-controller element mediates low-level transcription of the p6 subgenomic mRNA of Citrus tristeza virus. Molecular Plant Pathology, 2005, 6(2): 165-176.[27]Ayllón M A, Gowda S, Satyanarayana T, Dawson W O. cis-acting elements at opposite ends of the Citrus tristeza virus genome differ in initiation and termination of subgenomic RNAs. Virology, 2004, 322(1): 41-50.[28]Silva G, Marques N, Nolasco G. The evolutionary rate of Citrus tristeza virus ranks among the rates of the slowest RNA viruses. Journal of General Virology, 2012, 93(2): 419-429.[29]Weng Z M, Barthelson R, Gowda S, Hilf M E, Dawson W O, Galbraith D W, Xiong Z G. Persistent infection and promiscuous recombination of multiple genotypes of an RNA virus within a single host generate extensive diversity. Plos One, 2007, 2(9): e917. [30]Albiach-Martí M R, Mawassi M, Gowda S, Satyanarayana T, Hilf M E, Shanker S, Almira E C, Vives M C, Lopez C, Guerri J, Flores R, Moreno P, Garnsey S M, Dawson W O. Sequences of Citrus tristeza virus separated in time and space are essentially identical. Journal of Virology, 2000, 74(15): 6856-6865.[31]Satyanarayana T, Bar-Joseph M, Mawassi M, Albiach-Martí M R, Ayllón M A, Gowda S, Hilf M E, Moreno P, Garnsey S M, Dawson W O. Amplification of Citrus tristeza virus from a cDNA clone and infection of citrus trees. Virology, 2001, 280(1): 87-96.[32]Folimonova S Y. Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. Journal of Virology, 2012, 86(10): 5554-5561.[33]Gowda S, Satyanarayana T, Robertson C J, Garnsey S M, Dawson W O. Infection of citrus plants with virions generated in Nicotiana benthamiana plants agroin?ltrated with a binary vector based Citrus tristeza viru//Proceedings of the 16th Conference of the International Organization of Citrus Virologist, 2005: 23-34. [34]Ambrós S, El-Mohtar C, Ruiz-Ruiz S, Peña L, Guerri J, Dawson W O, Moreno P. Agroinoculation of Citrus tristeza virus causes systemic infection and symptoms in the presumed nonhost Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 2011, 24 (10): 1119-1131. [35]Orbovi?a V, Soriaa P, Mooreb G A, Grossera J W. The use of Citrus tristeza virus (CTV) containing a green fluorescent protein gene as a tool to evaluate resistance/tolerance of transgenic citrus plants. Crop Protection, 2011, 30(5): 572-576.[36]Ruiz-Ruiz S, Soler N, Sánchez-Navarro J, Fagoaga C, López C, Navarro L, Moreno P, Peña L, Flores R. Citrus tristeza virus p23: determinants for nucleolar localization and their influence on suppression of RNA silencing and pathogenesis. Acta Phytopathologica Sinica, 2013, 43(Suppl.): 328.[37]El-Shesheny I, Hajeri S, El-Hawary I, Gowda S, Killiny N. Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality. PLoS ONE, 2013, 8(5): e65392. [38]Hawkings C, Morgan K, Shaffer L, Powell C, Borovsky D, Cave R, Dawson B, Gowda S, Shatters R G. RNAi-based strategy for Asian citrus psyllid (Diaphorina citri) control: a method to reduce the spread of citrus greening disease//3rd International Reseach Conference on Huanglongbing-IRCHLB III, 2013: 81.[39]Hajeri S, El-Mohtar C, Dawson W O, Gowda S. Citrus tristeza virus-based RNA-interference (RNAi) vector and its potential in combating citrus Huanglongbing (HLB)//3rd International Reseach Conference on Huanglongbing-IRCHLB III, 2013: 111.[40]Vives M C, Galipienso L, Navarro L, Moreno P, Guerri J. The nucleotide sequence and genomic organization of Citrus leaf blotch virus: candidate type species for a new virus genus. Virology, 2001, 287(1): 225-233.[41]Vives M C, Martín S, Ambrós S, Renovell A, Navarro L, Pina J A, Moreno P, Guerri J. Development of a full-genome cDNA clone of Citrus leaf blotch virus and infection of citrus plants. Molecular Plant Pathology, 2008, 9(6): 787-797.[42]Agüero J, Ruiz-Ruiz S, Vives M C, Velázquez K, Navarro L, Peña L, Moreno P, Guerri J. Development of viral vectors based on Citrus leaf blotch virus to express foreign proteins or analyze gene function in citrus plants. Molecular Plant-Microbe Interactions, 2012, 25(10): 1326-1337.[43]Agüero J, Vives M C, Velázquez K, Ruiz-Ruiz S, Juarez J, Navarro L, Moreno P, Guerri J. Citrus leaf blotch virus invades meristematic regions in Nicotiana benthamiana and citrus. Molecular Plant Pathology, 2013, 25(10): 1326-1337.[44]Ohira K, Namba S, Rozanov M, Kusumi T, Tsuchizaki T. Complete sequence of an infectious full-length cDNA clone of Citrus tatter leaf capillovirus: comparative sequence analysis of capillovirus genomes. Journal of General Virology, 1995, 76(9): 2305-2309.[45]Tatineni S, Afunian M R, Hilf M E, Gowda S, Dawson W O, Garnsey S M. Molecular characterization of Citrus tatter leaf virus historically associated with meyer lemon trees: complete genome sequence and development of biologically active in vitro transcripts. Phytopathology, 2009, 99(4): 423-431. [46]Huang Q, Hartung J S. Cloning and sequence analysis of an infectious clone of Citrus yellow mosaic virus that can infect sweet orange via Agrobacterium-mediated inoculation. Journal of General Virology, 2001, 82(10): 2549-2558.[47]Li C, Yoshikawa N, Takahashi T, Ito T, Yoshida K, Koganezawa H. Nucleotide sequence and genome organization of Apple latent spherical virus: a new virus classi?ed into the family Comoviridae. Journal of General Virology, 2000, 81(2): 541-547.[48]Nakamura K, Yamagishi N, Isogai M, Komori S, Ito T, Yoshikawa N. Seed and pollen transmission of Apple latent spherical virus in apple. Journal of General Plant Pathology, 2011, 77(1): 48-53. [49]Li C, Sasaki N, Isogai M, Yoshikawa N. Stable expression of foreign proteins in herbaceous and apple plants using Apple latent spherical virus RNA2 vectors. Archives of Virology, 2004, 149(8): 1541-1558.[50]Takahashi, T, Sugawara, T, Yamatsuta, T, Isogai M, Natsuaki T, Yoshikawa N. Analysis of the spatial distribution of identical and two distinct virus populations differently labeled with cyan and yellow ?uorescent proteins in coinfected plants. Phytopathology, 2007, 97(10): 1200-1206.[51]Sasaki S, Yamagishi N, Yoshikawa N. Efficient virus-induced gene silencing in apple, pear and Japanese pear using Apple latent spherical virus vectors. Plant Methods, 2011, 7(1): 15. [52]Yamagishi N, Sasaki S, Yamagata K, Komori S, Nagase M, Wada M, Yamamoto T, Yoshikawa N. Promotion of ?owering and reduction of a generation time in apple seedlings by ectopical expression of the Arabidopsis thaliana FT gene using the Apple latent spherical virus vector. Plant Molecular Biology, 2011, 75(2): 193-204.[53]Candresse T, Cambra M, Dallot S, Lanneau M, Asensio M, Gorris M T, Revers F, Macquaire G, Olmos A, Boscia D, Quiot J B, Dunez J. Comparison of monoclonal antibodies and polymerase chain reaction assays for the typing of isolates belonging to the D and M serotypes of Plum pox potyvirus. Phytopathology, 1998, 88(3): 198-204.[54]Riechmann J L, Laín S, García J A. Highlights and prospects of potyvirus molecular biology. Journal of General Virology, 1992, 73(1): 1-16. [55]Riechmann J L, Laín S, García J A. Infectious in vitro transcripts from a plum pox potyvirus cDNA clone. Virology, 1990, 177(2): 710-716.[56]Guo S H, López-Moya J J, García J A. Susceptibility to recombination rearrangements of a chimeric plum pox potyvirus genome after insertion of a foreign gene. Virus Research, 1998, 57(2): 183-195.[57]López-Moya J J, García J A. Construction of a stable and highly infectious intron-containing cDNA clone of Plum pox potyvirus and its use to infect plants by particle bombardment. Virus Research, 2000, 68(2): 99-107. [58]Lansac M, Eyquard J P, Salvador B, Garcia J A, Le Gall O, Decroocq V, Escalettes V S. Application of GFP-tagged Plum pox virus to study Prunus–PPV interactions at the whole plant and cellular levels. Journal of Virological Methods, 2005, 129(2): 125-133.[59]Maliogka V, Salvador B, Carbonell A, Sáenz P, León D S, Oliveros J C, Delgadillo M, García J A, Simón-Mateo C. Virus variants with differences in the P1 protein coexist in a Plum pox virus population and display particular host-dependent pathogenicity features. Molecular Plant Pathology, 2012, 13(8): 877-886.[60]Pérez J J, Udeshi N D, Shabanowitz J, CiordiaS, JuárezS, Scott C, Olszewski NE, Hunt D F, GarcíaJ A. O-GlcNAc modification of the coat protein of the potyvirus Plum pox virus enhances viral infection. Virology, 2013, 442(2): 122-131. [61]Notte P L, Minafra A, Saldarelli P. A spot-PCR technique for the detection of phloem-limited grapevine virus. Journal of Virological Methods, 1997, 66(1): 103-108.[62]Galiakparov N, Tanne E, Sela I, Gafny R. Infectious RNA transcripts from Grapevine Virus A cDNA clone. Virus Genes, 1999, 19(3): 235-242.[63]Galiakparov N, Tanne E, Sela I, Gafny R. Functional analysis of the Grapevine virus A genome. Virology, 2003, 306(1): 42-50.[64]Haviv S, Galiakparov N, Goszczynski E D, Batuman O, Czosnek H, Mawassi M. Engineering the genome of Grapevine Virus A into a vector for expression of proteins in herbaceous plants. Journal of Virological Methods, 2006, 132(1/2): 227-231.[65]Muruganantham M, Moskovitz Y, Haviv S, Horesh T, Fenig-stein A, du Preez J, Stephan D, Burger J T, Mawassi M. Grapevine virus A-mediated gene silencing in Nicotiana benthamiana and Vitis vinifera. Journal of Virological Methods, 2009, 155(2): 167-174.[66]du Preez J. The development and characterization of grapevine virus-based expression vectors[D]. South Africa: Stellenbosch University, 2010.[67]Meng B, Li C, Goszczynski D E, Gonsalves D. Genome sequences and structures of two biologically distinct strains of Grapevine leafroll-associated virus 2 and sequence analysis. Virus Genes, 2005, 31(1): 31-41.[68]Chibaa M, Reeda J C, Prokhnevskya A I, Chapmana E J, Mawassib M, Kooninc E V, Carringtona J C, Dolja V V. Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology, 2006, 346(1): 7-14.[69]Maliogka V I, Dovas C I, Katis N I. Generic and species-specific detection of viruses belonging to an evolutionary distinct lineage within the Ampelovirus genus. Journal of Virological Methods, 2008, 154(1/2): 41-47.[70]Liu Y P, Peremyslov V V, Medina V, Dolja V V. Tandem leader proteases of Grapevine leafroll-associated virus-2: host-speci?c functions in the infection cycle. Virology, 2009, 383(2): 291-299.[71]Kurth E G, Peremyslov V V, Prokhnevsky A I, Kristin D. Miller K M, Carrington J C, Dolja V V. Virus-derived gene expression and RNA interference vector for grapevine. Journal of Virology, 2012, 86(11): 6002-6009.[72]Gleba Y, Klimyuk V, Marillonnet S. Viral vectors for the expression of proteins in plants. Current Opinion in Biotechnology, 2007, 18(2): 134-141.[73]Peretz Y, Mozes-Koch R, Akad F, Tanne E, Czosnek H, Sela I. A universal expression/silencing vector in plants. Plant Physiology, 2007, 145(4): 1251-1263.[74]Jia H F, Chai Y M, Li C L, Qin L, Shen Y Y. Cloning and characterization of the H subunit of a magnesium chelatase gene (PpCHLH) in peach. Journal of Plant Growth Regulation, 2011, 30(4): 445-455. |
[1] | 陈学森, 伊华林, 王楠, 张敏, 姜生辉, 徐娟, 毛志泉, 张宗营, 王志刚, 姜召涛, 徐月华, 李建明. 芽变选种推动世界苹果和柑橘产业优质高效发展案例解读[J]. 中国农业科学, 2022, 55(4): 755-768. |
[2] | 陈学森,王楠,张宗营,毛志泉,尹成苗. 关于果树种质资源与遗传育种若干问题的理解与思考[J]. 中国农业科学, 2022, 55(17): 3395-3410. |
[3] | 林晓,孙传茹,王彩霞,练森,董向丽,李保华. 影响苹果树腐烂病菌侵染致病的流行因子[J]. 中国农业科学, 2021, 54(11): 2333-2342. |
[4] | 陈柳,倪征,余斌,华炯钢,叶伟成,云涛,刘可姝,朱寅初,张存. 重组鸭瘟病毒载体中筛选高效表达鸭坦布苏病毒E蛋白启动子[J]. 中国农业科学, 2020, 53(24): 5125-5134. |
[5] | 夏桂敏,孙媛媛,王玮志,吴奇,迟道才. ‘寒富’苹果树茎流特征及其对环境因子的响应[J]. 中国农业科学, 2019, 52(4): 701-714. |
[6] | 宁越,米雪,陈星伊,邵建航,昝林森. SMAD1基因的沉默和过表达及对秦川牛原代成肌细胞生肌的影响[J]. 中国农业科学, 2019, 52(10): 1818-1829. |
[7] | 王晓焕,潘彤彤,练森,王彩霞,李保华. 环境因子对腐烂病菌在苹果枝条木质部内生长扩展的影响[J]. 中国农业科学, 2018, 51(17): 3291-3301. |
[8] | 王亚飞,阮涛,周彦,王雪峰,吴根土,孙现超,周常勇,青玲. 甜橙和柚中CTV强弱毒株系p20的遗传变异[J]. 中国农业科学, 2017, 50(7): 1343-1350. |
[9] | 许春景,吴玉星,戴青青,李正鹏,高小宁,黄丽丽. 苹果树腐烂病菌多聚半乳糖醛酸酶基因Vmpg7和Vmpg8的功能[J]. 中国农业科学, 2016, 49(8): 1489-1498. |
[10] | 李 芳,邓子牛,赵 亚,李大志,戴素明. 柑橘衰退病毒基因p23 RNAi载体的构建及转化[J]. 中国农业科学, 2016, 49(20): 3927-3933. |
[11] | 刘 颖,王克健,谢让金,吕 强,何绍兰,易时来,郑永强,邓 烈. 基于冠层高光谱信息的苹果树花量估测[J]. 中国农业科学, 2016, 49(18): 3608-3617. |
[12] | 王永江, 周彦, 李中安, 苏华楠, 黄爱军, 唐科志, 周常勇. 柑橘衰退病毒RT-LAMP快速检测方法的建立[J]. 中国农业科学, 2013, 46(3): 517-524. |
[13] | 李玲娣, 周常勇, 李中安, 田晓, 王永江, 唐科志, 周彦, 刘金香. 褐色橘蚜中柑橘衰退病毒实时荧光定量 RT-PCR检测方法的建立与应用[J]. 中国农业科学, 2013, 46(3): 525-533. |
[14] | 毕润霞, 杨洪强, 杨萍萍, 范伟国, 陈锦璞, 樊树雷, 吴瑞刚. 地下穴灌对苹果冠下土壤水分分布及叶片水分利用效率的影响[J]. 中国农业科学, 2013, 46(17): 3651-3658. |
[15] | 刘超, 于萌, 朱海鲸, 李明昭, 华进联. Mmu-miR-34c慢病毒表达载体构建及在奶山羊雄性生殖干细胞的表达[J]. 中国农业科学, 2012, 45(16): 3414-3421. |
|