[1]Krivtsov V, Griffiths B S, Liddell K, Garside A, Salmond R, Bezginova T, Thompson J. Soil nitrogen availability is re?ected in the bacterial pathway. Pedosphere, 2011, 21(1): 26-30.
[2]鲁如坤. “微域土壤学”—— 一个可能的土壤学的新分支. 土壤学报, 1999, 36(2): 287-288.
Lu R K. Microzone soil science—a possible new branch of soil science. Acta Pedologica Sinica, 1999, 36(2): 287-288. (in Chinese)
[3]张 乐, 何红波, 章建新, 张旭东. 不同用量葡萄糖对土壤氮素转化的影响. 土壤通报, 2008, 39(4): 775-778.
Zhang L, He H B, Zhang J X, Zhang X D. Effect of glucose addition with different amount on extraneous nitrogen transformation in soil. Chinese Journal of Soil Science, 2008, 39(4): 775-778. (in Chinese)
[4]朱兆良. 农田中氮肥的损失与对策. 土壤与环境, 2000, 9(1): 1-6.
Zhu Z L. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction. Soil and Environmental Sciences, 2000, 9(1): 1-6. (in Chinese)
[5]贾俊仙, 李忠佩, 车玉萍. 添加葡萄糖对不同肥力黑土氮素转化的影响. 土壤学报, 2011, 48(1): 207-211.
Jia J X, Li Z P, Che Y P. Effects of glucose addition on nitrogen transformation in black soils different inorganic carbon content. Acta Pedologica Sinica, 2011, 48(1): 207-211. (in Chinese)
[6]贾俊仙, 李忠佩, 车玉萍. 添加葡萄糖对不同肥力红壤性水稻土氮素转化的影响. 中国农业科学, 2010, 43(8):1617-1624.
Jia J X, Li Z P, Che Y P. Effects of glucose addition on N transformations in paddy soils with a gradient of organic C content in subtropical China. Scientia Agricultura Sinica, 2010, 43(8): 1617-1624. (in Chinese)
[7]Joergensen R G, Raubuch M. Adenylate energy charge of a glucose-treated soil without adding a nitrogen source. Soil Biology and Biochemistry, 2002, 34: 1317-1324.
[8]Joergensen R G, Scheu S. Response of soil microorganisms to the addition of carbon, nitrogen and phosphorus in a forest Rendzina. Soil Biology and Biochemistry, 1999, 31(6): 859-866.
[9]Yoshitake S, Sasaki A, Uchida M, Funatsu Y, Nakatsubo T. Carbon and nitrogen limitation to microbial respiration and biomass in an acidic solfatara ?eld. European Journal of Soil Biology, 2007, 43: 1-13.
[10]Dendooven L, Alcántara-Hernández R J, Valenzuela-Encinas C, Luna-Guido M, Perez-Guevara F, Marsch R. Dynamics of carbon and nitrogen in an extreme alkaline saline soil: A review. Soil Biology and Biochemistry, 2010, 42: 865-877.
[11]张 朝, 车玉萍, 李忠佩. 模拟土柱条件下黑土中肥料氮素的迁移转化特征. 中国生态农业学报, 2010, 18(4): 683-688.
Zhang C, Che Y P, Li Z P. Migration and transformation of fertilizer nitrogen in a simulated black soil column. Chinese Journal of Eco-Agriculture, 2010, 18(4): 683-688. (in Chinese)
[12]鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
Lu R K. Analytical Methods for Soil and Agricultural Chemistry. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[13]Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19: 703-707.
[14]Zhong W H, Cai Z C. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quatrenary red clay. Applied Soil Ecology, 2007, 36: 84-91.
[15]Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on basis of patterns of community level sole-carbon-source utilization. Applied Environmental Microbiology, 1991, 57: 2351-2359.
[16]Staddon W J, Duchesne L C, Trevors J T. Microbial diversity and community structure of postdisturbance forest soils as determined by sole-carbon-source utilization patterns. Microbial Ecology, 1997, 34: 125-130.
[17]刘 明, 李忠佩, 路 磊, 车玉萍. 添加不同养分培养下水稻土微生物呼吸和群落功能多样性变化. 中国农业科学, 2009, 42(3): 1108-1115.
Liu M, Li Z P, Lu L, Che Y P. Changes in soil respiration and microbial functional diversity of paddy soil under different fertilizer amendments. Scientia Agricultura Sinica, 2009, 42(3): 1108-1115. (in Chinese)
[18]李忠佩, 吴晓晨, 陈碧云. 不同利用方式下土壤有机碳转化及微生物群落功能多样性变化. 中国农业科学, 2007, 40(8): 1712-1721.
Li Z P, Wu X C, Chen B Y. Changes in transformation of soil organic carbon and functional diversity of soil microbial community under different land use patterns. Scientia Agricultura Sinica, 2007, 40(8): 1712-1721. (in Chinese)
[19]Conde E, Cardenas M, Ponce-Mendoza A, Luna-Guido M L, Cruz-Mondragón C, Dendooven L. The impacts of inorganic nitrogen application on mineralization of 14C-labelled maize and glucose, and on priming effect in saline alkaline soil. Soil Biology and Biochemistry, 2005, 37: 681-691.
[20]Wang L, Cai Z, Yang L, Meng L. Effects of disturbance and glucose addition on nitrous oxide and carbon dioxide emissions from a paddy soil. Soil and Tillage Research, 2005, 82: 185-194.
[21]Tiedje J M, Sexstone A J, Myrold D D, Robinson J A. Denitri?cation: ecological niches, competition and survival. Antonie von Leeuwenhoek, 1982, 48: 569-583.
[22]Sánchez-Martín L, Vallejo A, Dick J, Skiba U M. The in?uence of soluble carbon and fertilizer nitrogen on nitric oxide and nitrous oxide emissions from two contrasting agricultural soils. Soil Biology and Biochemistry, 2008, 40: 142-151.
[23]金雪霞, 范晓辉, 蔡贵信, 贺发云, 李辉信, 黄 耀. 菜地土壤氮素矿化和硝化作用的特征. 土壤, 2004, 36(4): 382-386.
Jin X X, Fan X H, Cai G X, He F Y, Li H X, Huang Y. Characteristics of nitrogen mineralization and nitrification in vegetable garden soils. Soils, 2004, 36(4): 382-386. (in Chinese)
[24]Aldén L, Demoling F, Bååth E. Rapid method of determining factors limiting bacterial growth in soil. Applied and. Environmental Microbiology, 2001, 67: 1830-1838.
[25]Jonasson S, Michelsen A, Schmidt I K, Nielsen E V, Callaghan T V. Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: implications for plant nutrient uptake. Oecologia, 1996, 106: 507-515.
[26]De Nobili M, Diaz-Ravińa M, Brookes P C, Jenkinson D S. Adenosine 5’-triphosphate measurements in soils containing recently added glucose. Soil Biology and Biochemistry, 1996, 28(8): 1099-1104.
[27]Chander K C, Joergensen R G. Decomposition of 14C glucose in two soils with different levels of heavy metal contamination. Soil Biology and Biochemistry, 2001, 33: 1811-1816.
[28]Blagodatsky S A, Heinemeyer O, Richter J. Estimating the active and total soil microbial biomass by kinetic respiration analysis. Biology of Fertility of Soils, 2000, 32:73-81.
[29]Bremer E, Kessel C V. Extractability of microbial 14C and 15N following addition of variable rates of labelled glucose and (NH4)2SO4 to soil. Soil Biology and Biochemistry, 1990, 22(5): 707-713.
[30]Marstorp H, Witter E. Extractable dsDNA and product formation as measures of microbial growth in soil upon substrate addition. Soil Biology and Biochemistry, 1999, 31(10): 1443-1453.
[31]Zak J C, Willig M R, Moorhead D L, Wildman H G. Functional diversity of microbial communities: a quantitative approach. Soil Biology and Biochemistry, 1994, 26(9): 1101-1108.
[32]Zabinski C A, Gannon J E. Effects of recreational impacts on soil microbial communities. Environmental Management, 1997, 21(2): 233-238.
[33]Thirukkumaran C M, Parkinson D. Microbial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizers. Soil Biology and Biochemistry, 2000, 32: 59-66. |