| [1] |
曹国锋, 邬冰, 钟守贤. 茶叶籽油、 油茶籽油与茶树油的区别. 中国油脂, 2008, 33(8): 17-20.
|
|
CAO G F, WU B, ZHONG S X. Differences among tea seed oil, oil-tea Camellia seed oil and tea tree oil. China Oils and Fats, 2008, 33(8): 17-20. (in Chinese)
|
| [2] |
恽卓婷, 廖鲜艳, 翁新楚. 茶叶籽油与油茶籽油理化性质及脂肪酸组成比较. 食品工业科技, 2011, 32(6): 136-138.
|
|
YUN Z T, LIAO X Y, WENG X C. Comparison of physicochemical properties and fatty acids composition of tea seed oil and Camellia oleifera seed oil. Science and Technology of Food Industry, 2011, 32(6): 136-138. (in Chinese)
|
| [3] |
常亚丽, 黄晓兵, 蒋双丰, 黄双杰, 孙慕芳, 刘威, 郭桂义. 豫南茶树种质资源籽实脂肪含量及脂肪酸组成分析. 茶叶科学, 2020, 40(3): 352-362.
|
|
CHANG Y L, HUANG X B, JIANG S F, HUANG S J, LIU W, GUO G Y. Analysis of fat content and fatty acid composition and absolute content in the tea seeds from southern Henan tea germplasms. Journal of Tea Science, 2020, 40(3): 352-362. (in Chinese)
|
| [4] |
YAO Y, LU Y, PENG K T, HUANG T, NIU Y F, XIE W H, YANG W D, LIU J S, LI H Y. Glycerol and neutral lipid production in the oleaginous marine diatom Phaeodactylum tricornutum promoted by overexpression of glycerol-3-phosphate dehydrogenase. Biotechnology for Biofuels, 2014, 7(1): 110.
|
| [5] |
GOMMA A E, LEE S K, SUN S M, YANG S H, CHUNG G. Improvement in oil production by increasing malonyl-CoA and glycerol-3-phosphate pools in Scenedesmus quadricauda. Indian Journal of Microbiology, 2015, 55(4): 447-455.
|
| [6] |
VIGEOLAS H, GEIGENBERGER P. Increased levels of glycerol- 3-phosphate lead to a stimulation of flux into triacylglycerol synthesis after supplying glycerol to developing seeds of Brassica napus L. in planta. Planta, 2004, 219(5): 827-835.
|
| [7] |
VIGEOLAS H, WALDECK P, ZANK T, GEIGENBERGER P. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnology Journal, 2007, 5(3): 431-441.
|
| [8] |
LIU F, XIA Y P, WU L, FU D H, HAYWARD A, LUO J L, YAN X H, XIONG X J, FU P, WU G, et al. Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis. Gene, 2015, 557(2): 163-171.
|
| [9] |
ZHAO Y, CAO P, CUI Y F, LIU D X, LI J P, ZHAO Y B, YANG S Q, ZHANG B, ZHOU R N, SUN M H, et al. Enhanced production of seed oil with improved fatty acid composition by overexpressing NAD+-dependent glycerol-3-phosphate dehydrogenase in soybean. Journal of Integrative Plant Biology, 2021, 63(6): 1036-1053.
|
| [10] |
QUETTIER A L, SHAW E, EASTMOND P J. SUGAR-DEPENDENT6 encodes a mitochondrial flavin adenine dinucleotide-dependent glycerol-3-p dehydrogenase, which is required for glycerol catabolism and post germinative seedling growth in Arabidopsis. Plant Physiology, 2008, 148(1): 519-528.
|
| [11] |
赵思阳, 阮成江, 丁健, 卢顺光, 温秀凤, 胡建忠. 沙棘油脂合成关键基因GPD1和DGAT的克隆及功能验证. 中南林业科技大学学报, 2023, 43(8): 149-158, 168.
|
|
ZHAO S Y, RUAN C J, DING J, LU S G, WEN X F, HU J Z. Cloning and functional validation of key genes GPD1 and DGAT involving in seed oil biosynthesis in sea buckthorn. Journal of Central South University of Forestry & Technology, 2023, 43(8): 149-158, 168. (in Chinese)
|
| [12] |
XU R H, WANG R L, LIU A Z. Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in developing seeds of Jatropha (Jatropha curcas L.). Biomass and Bioenergy, 2011, 35(5): 1683-1692.
|
| [13] |
WANG X J, LIU A Z. Expression of genes controlling unsaturated fatty acids biosynthesis and oil deposition in developing seeds of Sacha Inchi (Plukenetia volubilis L.). Lipids, 2014, 49(10): 1019-1031.
|
| [14] |
CHHIKARA S, ABDULLAH H M, AKBARI P, SCHNELL D, DHANKHER O P. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression. Plant Biotechnology Journal, 2018, 16(5): 1034-1045.
|
| [15] |
ESKANDARI M, COBER E R, RAJCAN I. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean. Theoretical and Applied Genetics, 2013, 126(7): 1839-1850.
|
| [16] |
HASLAM R P, SAYANOVA O, KIM H J, CAHOON E B, NAPIER J A. Synthetic redesign of plant lipid metabolism. The Plant Journal, 2016, 87(1): 76-86.
|
| [17] |
刘景, 丁健, 阮成江, 杜维, 张莞晨, 韩平. 沙棘3-磷酸甘油脱氢酶基因生物信息学及表达分析. 分子植物育种, 2020, 18(2): 409-415.
|
|
LIU J, DING J, RUAN C J, DU W, ZHANG W C, HAN P. Gene expression and bioinformatics analysis of HrGPD1 in sea buchthorn (Hippophae L.). Molecular Plant Breeding, 2020, 18(2): 409-415. (in Chinese)
|
| [18] |
HERRERA-VALENCIA V A, MACARIO-GONZÁLEZ L A, CASAIS-MOLINA M L, BELTRAN-AGUILAR A G, PERAZA- ECHEVERRÍA S. In silico cloning and characterization of the glycerol-3-phosphate dehydrogenase (GPDH) gene family in the green microalga Chlamydomonas reinhardtii. Current Microbiology, 2012, 64(5): 477-485.
|
| [19] |
XUE L L, CHEN H H, JIANG J G. Implications of glycerol metabolism for lipid production. Progress in Lipid Research, 2017, 68: 12-25.
|
| [20] |
WANG C G, LI Y, LU J, DENG X, LI H, HU Z L. Effect of overexpression of LPAAT and GPD 1 on lipid synthesis and composition in green microalga Chlamydomonas reinhardtii. Journal of Applied Phycology, 2018, 30(3): 1711-1719.
|
| [21] |
WANG C, ZHOU Z, JIANG S, LI Q, CUI L, ZHOU Y. Identification of the glycerol-3-phosphate dehydrogenase (GPDH) gene family in wheat and its expression profiling analysis under different stress treatments. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2022, 50(3): 12611.
|
| [22] |
SUN J, CUI H, WU B, WANG W, YANG Q, ZHANG Y, QIN T. Genome-wide identification of cotton (Gossypium spp.) glycerol- 3-phosphate dehydrogenase (GPDH) family members and the role of GhGPDH5 in response to drought stress. Plants, 2022, 11(5): 592.
|
| [23] |
CASAIS-MOLINA M L, PERAZA-ECHEVERRIA S, ECHEVARRÍA- MACHADO I, HERRERA-VALENCIA V A. Expression of Chlamydomonas reinhardtii CrGPDH2 and CrGPDH3 cDNAs in yeast reveals that they encode functional glycerol-3-phosphate dehydrogenases involved in glycerol production and osmotic stress tolerance. Journal of Applied Phycology, 2016, 28(1): 219-226.
|
| [24] |
ZHAO Y, LIU M, HE L, LI X, WANG F, YAN B W, WEI J P, ZHAO C J, LI Z T, XU J Y. A cytosolic NAD+-dependent GPDH from maize (ZmGPDH1) is involved in conferring salt and osmotic stress tolerance. BMC Plant Biology, 2019, 19(1): 16.
|
| [25] |
YANG Y H, ZHAO J, LIU P, XING H J, LI C C, WEI G R, KANG Z S. Glycerol-3-phosphate metabolism in wheat contributes to systemic acquired resistance against Puccinia striiformis f. sp. tritici. PLoS ONE, 2013, 8(11): e81756.
|
| [26] |
弭宪杰, 徐荣华, 刘爱忠, 吴丁, 田波. 蓖麻三磷酸甘油脱氢酶基因(RcGPDH)的克隆及功能分析. 中国油料作物学报, 2011, 33(5): 451-458.
|
|
MI X J, XU R H, LIU A Z, WU D, TIAN B. Cloning and characterization of glycerol-3-phosphate dehydrogenase gene (RcGPDH) from Castor bean. Chinese Journal of Oil Crop Sciences, 2011, 33(5): 451-458. (in Chinese)
|
| [27] |
余霞, 余舜武, 李天菲, 张余, 陈守俊, 陈晨, 李佳, 胡颂平. 水稻OsGPDH1的克隆与功能鉴定. 核农学报, 2017, 31(5): 829-836.
|
|
YU X, YU S W, LI T F, ZHAGN Y, CHEN S J, CHEN C, LI J, HU S P. Cloning and functional identification of OsGPDH1 in rice. Journal of Nuclear Agricultural Sciences, 2017, 31(5): 829-836. (in Chinese)
|
| [28] |
ZHAO Y, LI X, WANG F, ZHAO X C, GAO Y Q, ZHAO C J, HE L, LI Z T, XU J Y. Glycerol-3-phosphate dehydrogenase (GPDH) gene family in Zea mays L.: Identification, subcellular localization, and transcriptional responses to abiotic stresses. PLoS ONE, 2018, 13(7): e0200357.
|
| [29] |
ZHAO Y, LI X, ZHANG Z X, PAN W J, LI S N, XING Y, XIN W Y, ZHANG Z G, HU Z B, LIU C Y, et al. GmGPDH12, a mitochondrial FAD-GPDH from soybean, increases salt and osmotic stress resistance by modulating redox state and respiration. The Crop Journal, 2021, 9(1): 79-94.
|
| [30] |
刘少锋, 汪慧慧, 邬克彬, 熊兴华. 甘蓝型油菜GPDH基因克隆及其生物信息学分析. 华北农学报, 2017, 32(2): 109-116.
|
|
LIU S F, WANG H H, WU K B, XIONG X H. Cloning and bioinformatics analysis of GPDH in rapeseed. Acta Agriculturae Boreali-Sinica, 2017, 32(2): 109-116. (in Chinese)
|
| [31] |
张超. 油菜甘油-3-磷酸脱氢酶基因的克隆及功能研究[D]. 南京: 南京农业大学, 2012.
|
|
ZHANG C. Cloning and functional research of giycerol-3-phosphate dehydrogenase gene from Brassica napus L.[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese)
|
| [32] |
CHANDA B, XIA Y, MANDAL M K, YU K S, SEKINE K, GAO Q M, SELOTE D, HU Y L, STROMBERG A, NAVARRE D, et al. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nature Genetics, 2011, 43(5): 421-427.
|
| [33] |
WEI Y D, PERIAPPURAM C, DATLA R, SELVARAJ G, ZOU J T. Molecular and biochemical characterizations of a plastidic glycerol- 3-phosphate dehydrogenase from Arabidopsis§. Plant Physiology and Biochemistry, 2001, 39(10): 841-848.
|
| [34] |
SHEN W Y, WEI Y D, DAUK M, TAN Y F, TAYLOR D C, SELVARAJ G, ZOU J T. Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD+ ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis. The Plant Cell, 2006, 18(2): 422-441.
|
| [35] |
FANG W Q, HONG Y H, ZHOU T S, WEI Y D, LIN L L, WANG Z H, ZHU X H. Uncoupling of nutrient metabolism and cellular redox by cytosolic routing of the mitochondrial G-3-P dehydrogenase Gpd 2 causes loss of conidiation and pathogenicity in Pyricularia oryzae. Journal of Integrative Agriculture, 2025, 24(2): 638-654.
|
| [36] |
GRAEF G, LAVALLEE B J, TENOPIR P, TAT M, SCHWEIGER B, KINNEY A J, VAN GERPEN J H, CLEMENTE T E. A high-oleic- acid and low-palmitic-acid soybean: Agronomic performance and evaluation as a feedstock for biodiesel. Plant Biotechnology Journal, 2009, 7(5): 411-421.
|
| [37] |
高宇. 油莎豆块茎富油关键基因挖掘及其功能分析[D]. 太谷: 山西农业大学, 2023.
|
|
GAO Y. Mining of key genes responsible for oil biosynthesis and their mining of key genes responsible for oil biosynthesis and their functional analysis in oil-rich tubers of Cyperus esculentus[D]. Taigu: Shanxi Agricultural University, 2023. (in Chinese)
|