[1] |
BENNETZEN J. Culturing better tea research. Nature, 2019, 566(7742): S5.
doi: 10.1038/d41586-019-00396-3
|
[2] |
WAMBULWA M C, MEEGAHAKUMBURA M K, KAMUNYA S, WACHIRA F N. From the wild to the cup: Tracking footprints of the tea species in time and space. Frontiers in Nutrition, 2021, 8: 706770.
doi: 10.3389/fnut.2021.706770
|
[3] |
DREW L. The growth of tea. Nature, 2019, 566(7742): S2-S4.
|
[4] |
BRODY H. Tea. Nature, 2019, 566(7742): S1.
doi: 10.1038/d41586-019-00394-5
|
[5] |
DAS P R, KIM Y, HONG S J, EUN J B. Profiling of volatile and non-phenolic metabolites-Amino acids, organic acids, and sugars of green tea extracts obtained by different extraction techniques. Food Chemistry, 2019, 296: 69-77.
doi: S0308-8146(19)31007-6
pmid: 31202308
|
[6] |
黄晓燕. 图说茶文化. 北京: 华文出版社, 2009.
|
|
HUANG X Y. Illustration of Tea Culture. Beijing: Sino-Culture Press, 2009. (in Chinese)
|
[7] |
陈宗懋, 陈雪芬. 世界茶树病原名录. 茶叶科学, 1988, 8(2): 65-76.
|
|
CHEN Z M, CHEN X F. A world list of pathogens reported on tea plant. Journal of Tea Science, 1988, 8(2): 65-76. (in Chinese)
|
[8] |
HAO X Y, ZHANG W, ZHAO F, LIU Y, QIAN W, WANG Y, WANG L, ZENG J, YANG Y, WANG X. Discovery of plant viruses from tea plant (Camellia sinensis (L.) O. Kuntze) by metagenomic sequencing. Frontiers in Microbiology, 2018, 9: 2175.
doi: 10.3389/fmicb.2018.02175
|
[9] |
JO Y, CHO W K. Identification of viruses belonging to the family Partitiviridae from plant transcriptomes. bioRxiv, 2020, doi: 10. 1101/2020.03.11.988063.
|
[10] |
许瑜婷, 丁莹, 沈建国, 陈细红, 章淑玲, 杜振国, 高芳銮. 福建茶树潜隐病毒1的检测及全基因组序列特征. 植物病理学报, 2023, 53(3): 386-394.
|
|
XU Y T, DING Y, SHEN J G, CHEN X H, ZHANG S L, DU Z G, GAO F L. Detection of camellia cryptic virus 1 in Fujian Province and molecular characterization of its complete genome. Acta Phytopathologica Sinica, 2023, 53(3): 386-394. (in Chinese)
|
[11] |
NAZERIAN E, BAYAT H. Occurrence of tea plant necrotic ring blotch virus in Iran. Journal of Plant Protection Research, 2021, 61(2): 200-202.
|
[12] |
MARUYAMA N, IWABUCHI N, NISHIKAWA M, NIJO T, YOSHIDA T, KITAZAWA Y, MAEJIMA K, NAMBA S, YAMAJI Y. Complete genome sequence of tea plant necrotic ring blotch virus detected from a tea plant in Japan. Microbiology Resource Announcements, 2022, 11(6): e0032322.
doi: 10.1128/mra.00323-22
|
[13] |
REN H, CHEN Y, ZHAO F, DING C, ZHANG K, WANG L, YANG Y, HAO X, WANG X. Quantitative distribution and transmission of tea plant necrotic ring blotch virus in Camellia sinensis. Forests, 2022, 13(8): 1306.
doi: 10.3390/f13081306
|
[14] |
XIE X, ZHU C, HAN X. First report on the occurrence of grapevine leafroll-associated virus 7 in tea plants. Journal of Plant Pathology, 2022, 104(1): 455.
doi: 10.1007/s42161-021-01011-z
|
[15] |
WANG F, ZHU J Y, ZHU Y, YAN D K, DONG Q, JEGEDE O J, WU Q F. Complete genome sequence of a new badnavirus infecting a tea plant in China. Archives of Virology, 2022, 167(12): 2811-2815.
doi: 10.1007/s00705-022-05592-7
|
[16] |
彭梁. 油茶中两种新病毒的基因克隆及分子特性分析[D]. 南昌: 南昌大学, 2019.
|
|
PENG L. Genome determination and characterization of two novel viruses infecting Camellia oleifera C. Abel[D]. Nanchang: Nanchang University, 2019. (in Chinese)
|
[17] |
LÜ M D, LI X M, GUO R, LI M J, LIU X M, WANG Q, CHENG Y Q. Prevalence and distribution of grapevine leafroll-associated virus 7 in China detected by an improved reverse transcription polymerase chain reaction assay. Plant Pathology, 2014, 63(5): 1168-1176.
doi: 10.1111/ppa.2014.63.issue-5
|
[18] |
ZHANG Z Y, HUANG H, HAN X X, LI R, WU L P, WU L. Identification and molecular characterization of tea-oil camellia- associated totivirus 1. Archives of Virology, 2021, 166(8): 2347-2351.
doi: 10.1007/s00705-021-05058-2
|
[19] |
LI R H, ZHENG L P, CAO M J, WU L P, NORMANDY P, LIU H W. First identification and molecular characterization of a new badnavirus infecting camellia. Archives of Virology, 2020, 165(9): 2115-2118.
doi: 10.1007/s00705-020-04698-0
pmid: 32562074
|
[20] |
LI R, MOCK R, HUANG Q, ABAD J, HARTUNG J, KINARD G. A reliable and inexpensive method of nucleic acid extraction for the PCR-based detection of diverse plant pathogens. Journal of Virological Methods, 2008, 154(1/2): 48-55.
doi: 10.1016/j.jviromet.2008.09.008
|
[21] |
KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.
doi: 10.1093/molbev/msy096
pmid: 29722887
|
[22] |
EDGAR R C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 2004, 32(5): 1792-1797.
doi: 10.1093/nar/gkh340
pmid: 15034147
|
[23] |
NGUYEN L T, SCHMIDT H A, VON HAESELER A, MINH B Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 2015, 32(1): 268-274.
doi: 10.1093/molbev/msu300
|
[24] |
KALYAANAMOORTHY S, MINH B Q, WONG T K F, VON HAESELER A, JERMIIN L S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 2017, 14(6): 587-589.
doi: 10.1038/nmeth.4285
pmid: 28481363
|
[25] |
ADAMS I P, GLOVER R H, MONGER W A, MUMFORD R, JACKEVICIENE E, NAVALIN-SKIENE M, SAMUITIENE M, BOONHAM N. Next-generation sequencing and metagenomic analysis: A universal diagnostic tool in plant virology. Molecular Plant Pathology, 2009, 10(4): 537-545.
doi: 10.1111/j.1364-3703.2009.00545.x
pmid: 19523106
|
[26] |
ROTT M, XIANG Y, BOYES I, BELTON M, SAEED H, KESANAKURTI P, HAYES S, LAWRENCE T, BIRCH C, BHAGWAT B, RAST H. Application of next generation sequencing for diagnostic testing of tree fruit viruses and viroids. Plant Disease, 2017, 101(8): 1489-1499.
doi: 10.1094/PDIS-03-17-0306-RE
pmid: 30678581
|
[27] |
BARBA M, CZOSNEK H, HADIDI A. Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses, 2014, 6(1): 106-136.
doi: 10.3390/v6010106
pmid: 24399207
|
[28] |
ROOSSINCK M J, MARTIN D P, ROUMAGNAC P. Plant virus metagenomics: Advances in virus discovery. Phytopathology, 2015, 105(6): 716-727.
doi: 10.1094/PHYTO-12-14-0356-RVW
pmid: 26056847
|
[29] |
WU Q F, DING S W, ZHANG Y J, ZHU S F. Identification of viruses and viroids by next-generation sequencing and homology-dependent and homology-independent algorithms. Annual Review of Phytopathology, 2015, 53(1): 425-444.
doi: 10.1146/phyto.2015.53.issue-1
|
[30] |
VILLAMOR D E V, HO T, AL RWAHNIH M, MARTIN R R, TZANETAKIS I E. High throughput sequencing for plant virus detection and discovery. Phytopathology, 2019, 109(5): 716-725.
doi: 10.1094/PHYTO-07-18-0257-RVW
pmid: 30801236
|
[31] |
WU L P, DU Y M, XIAO H, PENG L, LI R. Complete genomic sequence of tea-oil camellia deltapartitivirus 1, a novel virus from Camellia oleifera. Archives of Virology, 2020, 165(1): 227-231.
doi: 10.1007/s00705-019-04429-0
pmid: 31659444
|
[32] |
KATSAROU K, ANDRONIS C, JAMES A, EUTHYMIOU K, KRYOVRYSANAKI N, PAPPI P G, KALANTIDIS K. Complete genome sequence of a carlavirus identified in grapevine (Vitis sp.) in Greece. Archives of Virology, 2023, 168(6): 172.
doi: 10.1007/s00705-023-05795-6
|
[33] |
|
|
TANG Y F, PEI F, LI Z G, SHE X M, YU L, LAN G B, DENG M G, HE Z F. Identification of viruses infecting peppers in Guangdong by small RNA deep sequencing. Scientia Agricultura Sinica, 2019, 52(13): 2256-2267. doi: 10.3864/j.issn.0578-1752.2019.13.006. (in Chinese)
|
[34] |
SYLLER J. Facilitative and antagonistic interactions between plant viruses in mixed infections. Molecular Plant Pathology, 2012, 13(2): 204-216.
doi: 10.1111/j.1364-3703.2011.00734.x
pmid: 21726401
|
[35] |
刘勇, 李凡, 李月月, 张松柏, 高希武, 谢艳, 燕飞, 张安盛, 戴良英, 程兆榜, 等. 侵染我国主要蔬菜作物的病毒种类、分布与发生趋势. 中国农业科学, 2019, 52(2): 239-261. doi: 10.3864/j.issn. 0578-1752.2019.02.005.
|
|
LIU Y, LI F, LI Y Y, ZHANG S B, GAO X W, XIE Y, YAN F, ZHANG A S, DAI L Y, CHENG Z B, et al. Identification, distribution and occurrence of viruses in the main vegetables of China. Scientia Agricultura Sinica, 2019, 52(2): 239-261. doi: 10.3864/ j.issn.0578-1752.2019.02.005. (in Chinese)
|
[36] |
PALLÁS V, SÁNCHEZ-NAVARRO J A, JAMES D. Recent advances on the multiplex molecular detection of plant viruses and viroids. Frontiers in Microbiology, 2018, 9: 2087.
doi: 10.3389/fmicb.2018.02087
pmid: 30250456
|
[37] |
XU L, MING J. Development of a multiplex RT-PCR assay for simultaneous detection of lily symptomless virus, lily mottle virus, cucumber mosaic virus, and plantago asiatica mosaic virus in lilies. Virology Journal, 2022, 19(1): 219.
doi: 10.1186/s12985-022-01947-3
pmid: 36527114
|
[38] |
吐逊艾力·艾孜提力, 侯婉莹, 郭庆元, 古丽尼沙·卡斯木, 代毅, 李世访, 麦合木提江·米吉提. 三种无花果病毒的多重RT-PCR检测. 分子植物育种, 2021, 19(16): 5414-5420.
|
|
TUXUNAILI·AIZITILI, HOU W Y, GUO Q Y, GULINISHA·KASIMU, DAI Y, LI S F, MAIHEMUTIJIANG·MIJITI. Multiplex RT-PCR detection of three fig viruses. Molecular Plant Breeding, 2021, 19(16): 5414-5420. (in Chinese)
|