[1] |
LIU B N, LIU X T, LIANG Z H, WANG J H. Gut microbiota in obesity. World Journal of Gastroenterology, 2021, 27(25): 3837-3850.
|
[2] |
IATCU C O, STEEN A, COVASA M. Gut microbiota and complications of type-2 diabetes. Nutrients, 2021, 14(1): 166.
|
[3] |
BROWN E M, CLARDY J, XAVIER R J. Gut microbiome lipid metabolism and its impact on host physiology. Cell Host & Microbe, 2023, 31(2): 173-186.
|
[4] |
CALATAYUD M, VAN DEN ABBEELE P, GHYSELINCK J, MARZORATI M, ROHS E, BIRKETT A. Comparative effect of 22 dietary sources of fiber on gut microbiota of healthy humans in vitro. Frontiers in Nutrition, 2021, 8: 700571.
|
[5] |
JIANG T T, GAO X J, WU C, TIAN F, LEI Q C, BI J C, XIE B X, WANG H Y, CHEN S, WANG X Y. Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic endotoxemia in rats with diet-induced obesity. Nutrients, 2016, 8(3): 126.
|
[6] |
JI Y H, MAO K M, GAO J, CHITRAKAR B, SADIQ F A, WANG Z X, WU J N, XU C, SANG Y X. Pear pomace soluble dietary fiber ameliorates the negative effects of high-fat diet in mice by regulating the gut microbiota and associated metabolites. Frontiers in Nutrition, 2022, 9: 1025511.
|
[7] |
BIANCHI F, LARSEN N, DE MELLO TIEGHI T, ADORNO M A T, KOT W, SAAD S M I, JESPERSEN L, SIVIERI K. Modulation of gut microbiota from obese individuals by in vitro fermentation of citrus pectin in combination with Bifidobacterium longum BB-46. Applied Microbiology and Biotechnology, 2018, 102(20): 8827-8840.
|
[8] |
GARCIA-AMEZQUITA L E, TEJADA-ORTIGOZA V, HEREDIA- OLEA E, SERNA-SALDÍVAR S O, WELTI-CHANES J. Differences in the dietary fiber content of fruits and their by-products quantified by conventional and integrated AOAC official methodologies. Journal of Food Composition and Analysis, 2018, 67: 77-85.
|
[9] |
O'SHEA N, ARENDT E K, GALLAGHER E. Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innovative Food Science & Emerging Technologies, 2012, 16: 1-10.
|
[10] |
DAI F J, CHAU C F. Classification and regulatory perspectives of dietary fiber. Journal of Food and Drug Analysis, 2017, 25(1): 37-42.
|
[11] |
FU X D, LIU Z M, ZHU C L, MOU H J, KONG Q. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Critical Reviews in Food Science and Nutrition, 2019, 59(Suppl.): S130-S152.
|
[12] |
BAI X L, HE Y, QUAN B Y, XIA T, ZHANG X L, WANG Y Q, ZHENG Y, WANG M. Physicochemical properties, structure, and ameliorative effects of insoluble dietary fiber from tea on slow transit constipation. Food Chemistry, 2022, 14: 100340.
|
[13] |
DE PAEPE K, VERSPREET J, VERBEKE K, RAES J, COURTIN C M, VAN DE WIELE T. Introducing insoluble wheat bran as a gut microbiota niche in an in vitro dynamic gut model stimulates propionate and butyrate production and induces colon region specific shifts in the luminal and mucosal microbial community. Environmental Microbiology, 2018, 20(9): 3406-3426.
|
[14] |
DENG M, LIN Y S, DONG L H, JIA X C, SHEN Y L, LIU L, CHI J W, HUANG F, ZHANG M W, ZHANG R F. Physicochemical and functional properties of dietary fiber from pummelo (Citrus grandis L. Osbeck) and grapefruit (Citrus paradisi Mcfad) cultivars. Food Bioscience, 2021, 40: 100890.
|
[15] |
CHEIKH ROUHOU M, ABDELMOUMEN S, THOMAS S, ATTIA H, GHORBEL D. Use of green chemistry methods in the extraction of dietary fibers from cactus rackets (Opuntia ficus indica): structural and microstructural studies. International Journal of Biological Macromolecules, 2018, 116: 901-910.
|
[16] |
中华人民共和国国家卫生和计划生育委员会. GB 5009.88—2014, 食品安全国家标准食品中膳食纤维的测定. 北京: 中国标准出版社. 2015.
|
|
National Health and Family Planning Commission of the the People's Republic of China. GB 5009.88-2014, National standard for food safety-Determination of dietary fiber in food. Beijing: Standards Press of China. 2015. (in Chinese)
|
[17] |
ZHOU L, WANG W, HUANG J, DING Y, PAN Z Q, ZHAO Y, ZHANG R K, HU B, ZENG X X. In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota. Food & Function, 2016, 7(4): 1959-1967.
|
[18] |
GONG L X, WEN T T, WANG J. Role of the microbiome in mediating health effects of dietary components. Journal of Agricultural and Food Chemistry, 2020, 68(46): 12820-12835.
|
[19] |
CHEN T T, CHEN D W, TIAN G, ZHENG P, MAO X B, YU J, HE J, HUANG Z Q, LUO Y H, LUO J Q, YU B. Soluble fiber and insoluble fiber regulate colonic microbiota and barrier function in a piglet model. BioMed Research International, 2019, 2019: 7809171.
|
[20] |
AL-TAMIMI M A H M, PALFRAMAN R J, COOPER J M, GIBSON G R, RASTALL R A. In vitro fermentation of sugar beet Arabinan and Arabino-oligosaccharides by the human gut microflora. Journal of Applied Microbiology, 2006, 100(2): 407-414.
|
[21] |
MENDIS M, LECLERC E, SIMSEK S. Arabinoxylans, gut microbiota and immunity. Carbohydrate Polymers, 2016, 139: 159-166.
doi: 10.1016/j.carbpol.2015.11.068
pmid: 26794959
|
[22] |
DENG M, YE J M, ZHANG S, ZHANG R F, LU Q, DONG L H, HUANG F, JIA X C, ZHANG M W. Composition, structural, physicochemical and functional properties of dietary fiber from different tissue parts of Shatianyu (Citrus grandis L. Osbeck). LWT-Food Science and Technology, 2024, 191: 115581.
|
[23] |
GORHAM J B, KANG S, WILLIAMS B A, GRANT L J, MCSWEENEY C S, GIDLEY M J, MIKKELSEN D. Addition of Arabinoxylan and mixed linkage glucans in porcine diets affects the large intestinal bacterial populations. European Journal of Nutrition, 2017, 56(6): 2193-2206.
doi: 10.1007/s00394-016-1263-4
pmid: 27401929
|
[24] |
侯雅琴. 不溶性膳食纤维的结构变化对其肠道菌群调节作用的影响及机制初探[D]. 南昌: 南昌大学, 2023.
|
|
HOU Y Q. The influence and mechanism of structural changes in insoluble dietary fiber on its gut microbiota regulation[D]. Nanchang: Nanchang University, 2023. (in Chinese)
|
[25] |
HARMSEN H J M, RAANGS G C, HE T, DEGENER J E, WELLING G W. Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Applied and Environmental Microbiology, 2002, 68(6): 2982-2990.
|
[26] |
JAVED R, TAKU A K, GANGIL R, SHARMA R K. Molecular characterization of virulence genes of Streptococcus equi subsp. equi and Streptococcus equi subsp. zooepidemicus in equines. Veterinary World, 2016, 9(8): 875-881.
|
[27] |
HU T T, WU Q Q, YAO Q, JIANG K B, YU J B, TANG Q Z. Short-chain fatty acid metabolism and multiple effects on cardiovascular diseases. Ageing Research Reviews, 2022, 81: 101706.
|
[28] |
LOUIS P, FLINT H J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiology Letters, 2009, 294(1): 1-8.
doi: 10.1111/j.1574-6968.2009.01514.x
pmid: 19222573
|
[29] |
VACCA M, CELANO G, CALABRESE F M, PORTINCASA P, GOBBETTI M, DE ANGELIS M. The controversial role of human gut Lachnospiraceae. Microorganisms, 2020, 8(4): 573.
|
[30] |
LIU C, DU P, CHENG Y L, GUO Y H, HU B, YAO W R, ZHU X, QIAN H. Study on fecal fermentation characteristics of aloe polysaccharides in vitro and their predictive modeling. Carbohydrate Polymers, 2021, 256: 117571.
|
[31] |
TAO S Y, BAI Y, ZHOU X J, ZHAO J B, YANG H J, ZHANG S, WANG J J. In vitro fermentation characteristics for different ratios of soluble to insoluble dietary fiber by fresh fecal microbiota from growing pigs. ACS Omega, 2019, 4(12): 15158-15167.
|