中国农业科学 ›› 2025, Vol. 58 ›› Issue (17): 3418-3433.doi: 10.3864/j.issn.0578-1752.2025.17.005

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

西辽河平原生物育种抗虫玉米新品种高产技术模式

张婷婷1,2(), 张国强2(), 李少昆2, 王克如2, 谢瑞芝2, 薛军2, 方梁2, 李晓红2, 富家乐2, 李佳锴2, 梁晨2, 葛均筑1,*(), 明博2,*()   

  1. 1 天津农学院农学与资源环境学院/天津市主要作物智能育种重点实验室,天津 300392
    2 中国农业科学院作物科学研究所/作物基因资源与育种全国重点实验室,北京 100081
  • 收稿日期:2025-03-04 接受日期:2025-05-30 出版日期:2025-09-01 发布日期:2025-09-02
  • 通信作者:
    葛均筑,E-mail:
    明博,E-mail:
  • 联系方式: 张婷婷,E-mail:zhangtt0505@163.com。张国强,E-mail:zhangguoqiang@caas.cn。张婷婷和张国强为同等贡献作者。
  • 基金资助:
    国家重点研发计划(2023YFD2303300); 中国农业科学院专项基金(CARS-02-15); 农业科技创新计划(CAAS-ZDRW202004); 通辽市科技计划项目(TL2023YF006)

High-Yield Technology Model of New Insect-Resistant Maize Varieties for Biological Breeding in the Xiliaohe Plain

ZHANG TingTing1,2(), ZHANG GuoQiang2(), LI ShaoKun2, WANG KeRu2, XIE RuiZhi2, XUE Jun2, FANG Liang2, LI XiaoHong2, FU JiaLe2, LI JiaKai2, LIANG Chen2, GE JunZhu1,*(), MING Bo2,*()   

  1. 1 College of Agronomy and Resources and Environment, Tianjin Agricultural University/Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Tianjin 300392
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/ State Key Laboratory of Crop Gene Resources and Breeding, Beijing 100081
  • Received:2025-03-04 Accepted:2025-05-30 Published:2025-09-01 Online:2025-09-02

摘要:

【目的】探讨生物育种抗虫新品种与密植精准调控高产技术结合对玉米产量及经济效益的影响,提出适宜生物育种抗虫新品种的最佳栽培模式,为优化西辽河平原春玉米高产高效栽培技术体系提供理论依据。【方法】于2023—2024年在内蒙古自治区通辽市开展田间试验,试验采用裂区设计,以栽培模式为主区,设置当地传统农户模式(FP)和密植精准调控模式(DPDI)2种综合栽培模式;以品种为副区,采用东单1331(DD1331)、东单1331K(DD1331K)、优迪919(YD919)、优迪919HZ(YD919HZ)4个玉米品种,分析不同栽培模式下品种抗虫性状对玉米产量及经济效益的影响。【结果】2年试验期间,抗虫品种田块虫害发生程度均为轻发生,虫株率达6.80%—9.87%;常规品种田块虫害发生程度为中等发生或偏重发生,虫株率达22.27%—36.31%。在2023年(虫株率>30%),抗虫新品种(DD1331K、YD919HZ)较常规品种(DD1331、YD919)显著提高了千粒重,进而提高了玉米产量(0.84%—9.31%)和经济效益(0.3%—13.3%);而在2024年虫株率约为23%的情况下,抗虫品种与常规品种间穗粒数、千粒重和产量无显著差异。随着种植密度的增加,玉米产量在9.0或10.5万株/hm2密度时达到最大,显著高于6.0万株/hm2密度下的产量,分别提高了13.54%—19.94%和7.48%—21.01%。玉米密植精准调控模式2年的平均产量显著高于传统农户模式,2023年的增产幅度为13.50%—19.19%,2024年的增产幅度为7.03%—14.42%。与传统农户模式相比,密植精准调控模式的经济效益总体提升0.19—1.02万元/hm2。【结论】抗虫品种在虫害严重发生时,可显著提高玉米产量(最高9.31%)和经济效益(最高40.3%),但在虫害中等发生程度的情况下与常规品种无显著差异。密植精准调控模式通过调控种植密度(9.0—10.5万株/hm2)和优化水肥精准管理,较传统农户模式2年平均增产22.18%,经济效益提升0.57万元/hm2。其核心原理在于抗虫品种可以减少虫害威胁,降低产量损失,减少杀虫剂使用同时降低生产投入成本,通过合理密植增大玉米群体的生产能力,并结合滴灌水肥一体化进行精准调控进而实现玉米的增产和增收。抗虫品种与密植精准调控模式的协同应用可实现技术叠加,进一步提升玉米的高产稳产高效能力。

关键词: 生物育种, 抗虫玉米, 栽培模式, 精准调控, 产量, 经济效益

Abstract:

【Objective】This study aimed to explore the effects of combining new bio-breeding insect-resistant varieties with dense-planting precision-controlled high-yield technology on maize yield and economic benefits, and to propose the optimal cultivation mode suitable for new bio-breeding insect-resistant varieties, so as to provide the theoretical basis for optimizing the high-yield and high-efficiency cultivation system of spring maize in the Xiliaohe Plain.【Method】Through a field trial in Tongliao, Inner Mongolia from 2023 to 2024, the experiment was conducted in a split-zone design, with cultivation mode as the main zone, setting up two modes of local traditional farmer mode (FP) and dense planting precision regulation mode (DPDI); varieties as the sub-zone, four maize varieties were used, namely, Dongdan 1331 (DD1331), Dongdan 1331K (DD1331K), Youdi 919 (YD919), Youdi 919HZ (YD919HZ). Then, the impact of varietal insect resistance traits on maize yield and economic benefits under different technical models were analyzed.【Result】During a two-year trial, the insect pests in the fields of insect-resistant varieties occurred lightly, with the insect plant rate of 6.80%-9.87%; the fields of conventional varieties occurred moderately or heavily, with the insect plant rate of 22.27%-36.31%. In 2023 (insect plant rate>30%), compared with conventional varieties (DD1331, YD919), the new insect-resistant varieties (DD1331K, YD919HZ) significantly increased thousand kernel weight, thus improving maize yield (0.84%-9.31%) and economic benefits (0.3%-13.3%), whereas in 2024, when the insect plant rate was about 23%, there was no significant difference in the number of thousand kernels and the number of grains between insect-resistant varieties, and there were no significant differences in ear grain number, thousand kernel weight and yield between conventional varieties. With increasing planting density, maize yield reached its maximum at 9.0×104 or 10.5×104 plants/hm2, which was significantly higher than that at 6.0×104 plants/hm2 density, by 13.54%-19.94% and 7.48%-21.01%, respectively. The two-year average yields of the dense planting precision regulated model were significantly higher than those of the traditional farmers' model, with yield increases ranging from 13.50% to 19.19% in 2023 and from 7.03% to 14.42% in 2024. Compared with the traditional farmers' model, the economic benefits of the dense planting precision regulation model were generally improved by 0.19×104-1.02×104 yuan/hm2.【Conclusion】Insect-resistant varieties (DD1331K, YD919HZ) significantly improved yield (up to 9.31%) and economic efficiency (up to 40.3%) in years of severe insect infestation (>30% of insect plants), but did not differ significantly from conventional varieties under low insect pressure. Through optimized density (9.0×104-10.5×104 plants/hm2) and precise management of water and fertilizer, DPDI increased yields by an average of 22.18% in two years and improved economic benefits by 0.57×104 yuan/hm2 compared with the conventional mode (FP); the core principle of DPDI was that insect resistant varieties could reduce the threat of pests, decrease yield losses, reduce the use of insecticides, and lower production input costs. By increasing the production capacity of maize populations through reasonable planting density and combining drip irrigation with water and fertilizer integration for precise regulation, the yield and income of maize could be increased. The synergistic application of insect-resistant varieties and DPDI model could achieve technological superposition and further improve the ability of high and stable yield.

Key words: biological breeding, insect-resistant maize, cultivation mode, precise regulation, yield, economic benefits