[1] |
MANCINELLI A C, MENCHETTI L, BIROLO M, BITTANTE G, CHIATTELLI D, CASTELLINI C. Crossbreeding to improve local chicken breeds: Predicting growth performance of the crosses using the Gompertz model and estimated heterosis. Poultry Science, 2023, 102(8): 102783.
|
[2] |
范婷婷, 陈燕, 张路培, 徐凌洋, 高会江, 李俊雅, 高雪. 西门塔尔牛与我国地方黄牛的杂种优势预测分析. 畜牧兽医学报, 2021, 52(3): 653-661.
|
|
FAN T T, CHEN Y, ZHANG L P, XU L Y, GAO H J, LI J Y, GAO X. Prediction of heterosis between Chinese Simmental beef cattle and Chinese local cattle. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 653-661. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2021.03.009
|
[3] |
AMUZU-AWEH E N, BOVENHUIS H, DE KONING D J, BIJMA P. Predicting heterosis for egg production traits in crossbred offspring of individual White Leghorn sires using genome-wide SNP data. Genetics Selection Evolution, 2015, 47(1): 27.
|
[4] |
JONES D F. Dominance of linked factors as a means of accounting for heterosis. Genetics, 1917, 2(5): 466-479.
doi: 10.1093/genetics/2.5.466
pmid: 17245892
|
[5] |
SHULL G H. The composition of a field of maize. Journal of Heredity, 1908, os-4(1): 296-301.
|
[6] |
MINVIELLE F. Dominance is not necessary for heterosis: A two-locus model. Genetical Research, 1987, 49(3): 245-247.
|
[7] |
XIAO Y J, JIANG S Q, CHENG Q, WANG X Q, YAN J, ZHANG R Y, QIAO F, MA C, LUO J Y, LI W Q, et al. The genetic mechanism of heterosis utilization in maize improvement. Genome Biology, 2021, 22(1): 148.
doi: 10.1186/s13059-021-02370-7
pmid: 33971930
|
[8] |
GU Z L, GONG J Y, ZHU Z, LI Z, FENG Q, WANG C S, ZHAO Y, ZHAN Q L, ZHOU C C, WANG A H, et al. Structure and function of rice hybrid genomes reveal genetic basis and optimal performance of heterosis. Nature Genetics, 2023, 55: 1745-1756.
doi: 10.1038/s41588-023-01495-8
pmid: 37679493
|
[9] |
VITEZICA Z G, VARONA L, LEGARRA A. On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics, 2013, 195(4): 1223-1230.
doi: 10.1534/genetics.113.155176
pmid: 24121775
|
[10] |
DUENK P, CALUS M P L, WIENTJES Y C J, BIJMA P. Benefits of dominance over additive models for the estimation of average effects in the presence of dominance. G3 Genes|Genomes|Genetics, 2017, 7(10): 3405-3414.
|
[11] |
SU G S, CHRISTENSEN O F, OSTERSEN T, HENRYON M, LUND M S. Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers. PLoS ONE, 2012, 7(9): e45293.
|
[12] |
VITEZICA Z G, LEGARRA A, TORO M A, VARONA L. Orthogonal estimates of variances for additive, dominance, and epistatic effects in populations. Genetics, 2017, 206(3): 1297-1307.
doi: 10.1534/genetics.116.199406
pmid: 28522540
|
[13] |
EBRAHIMI K, DASHAB G R, FARAJI-AROUGH H, ROKOUEI M. Estimation of additive and non-additive genetic variances of body weight in crossbreed populations of the Japanese quail. Poultry Science, 2019, 98(1): 46-55.
doi: 10.3382/ps/pey357
pmid: 30169748
|
[14] |
ABU TALEB SADEGHI S, ROKOUEI M, VALLEH M V, ALI ABBASI M, FARAJI-AROUGH H. Estimation of additive and non-additive genetic variance component for growth traits in Adani goats. Tropical Animal Health and Production, 2020, 52(2): 733-742.
doi: 10.1007/s11250-019-02064-0
pmid: 31625012
|
[15] |
JOSHI R, MEUWISSEN T H E, WOOLLIAMS J A, GJØEN H M. Genomic dissection of maternal, additive and non-additive genetic effects for growth and carcass traits in Nile Tilapia. Genetics Selection Evolution, 2020, 52(1): 1.
|
[16] |
NAGAI R, KINUKAWA M, WATANABE T, OGINO A, KUROGI K, ADACHI K, SATOH M, UEMOTO Y. Genomic dissection of repeatability considering additive and no additive genetic effects for Semen production traits in beef and dairy bulls. Journal of Animal Science, 2022, 100(9): skac241.
|
[17] |
VITEZICA Z G, REVERTER A, HERRING W, LEGARRA A. Dominance and epistatic genetic variances for litter size in pigs using genomic models. Genetics Selection Evolution, 2018, 50(1): 71.
doi: 10.1186/s12711-018-0437-3
pmid: 30577727
|
[18] |
ALVES K, BRITO L F, BAES C F, SARGOLZAEI M, ROBINSON J A B, SCHENKEL F S. Estimation of additive and non-additive genetic effects for fertility and reproduction traits in North American Holstein cattle using genomic information. Journal of Animal Breeding and Genetics, 2020, 137(3): 316-330.
doi: 10.1111/jbg.12466
pmid: 31912573
|
[19] |
SCHNEIDER H, HEISE J, TETENS J, THALLER G, WELLMANN R, BENNEWITZ J. Genomic dominance variance analysis of health and milk production traits in German Holstein cattle. Journal of Animal Breeding and Genetics, 2023, 140(4): 390-399.
doi: 10.1111/jbg.12765
pmid: 36872841
|
[20] |
LIU Y, XU L, WANG Z Z, XU L, CHEN Y, ZHANG L P, XU L Y, GAO X, GAO H J, ZHU B, LI J Y. Genomic prediction and association analysis with models including dominance effects for important traits in Chinese Simmental beef cattle. Animals, 2019, 9(12): 1055.
|
[21] |
CUI L L, YANG B, XIAO S J, GAO J, BAUD A, GRAHAM D, MCBRIDE M, DOMINICZAK A, SCHAFER S, AUMATELL R L, et al. Dominance is common in mammals and is associated with trans-acting gene expression and alternative splicing. Genome Biology, 2023, 24(1): 215.
doi: 10.1186/s13059-023-03060-2
pmid: 37773188
|
[22] |
吴常信. 优质鸡生产中杂种优势利用的相关问题. 中国家禽, 1999, 21(5): 4-5, 13.
|
|
WU C X. Problems related to heterosis utilization in high quality chicken production. China Poultry, 1999, 21(5): 4-5, 13. (in Chinese)
|
[23] |
曲玉杰, 孙君灵, 耿晓丽, 王骁, Zareen Sarfraz, 贾银华, 潘兆娥, 何守朴, 龚文芳, 王立如, 庞保印, 杜雄明. 陆地棉亲本间遗传距离与杂种优势的相关性研究. 中国农业科学, 2019, 52(9): 1488-1500. doi: 10.3864/j.issn.0578-1752.2019.09.002.
|
|
QU Y J, SUN J L, GENG X L, WANG X, SARFRAZ Z, JIA Y H, PAN Z E, HE S P, GONG W F, WANG L R, PANG B Y, DU X M. Correlation between genetic distance of parents and heterosis in upland cotton. Scientia Agricultura Sinica, 2019, 52(9): 1488-1500. doi: 10.3864/j.issn.0578-1752.2019.09.002. (in Chinese)
|
[24] |
WORKU A. A review on population structure, genetic diversity analysis, genetic distance between population and genetic singularity in livestock. Advances in Life Science and Technology, 2017, 54: 1-6.
|
[25] |
HATTEMER H H. Genetic distance between populations. Theoretical and Applied Genetics, 1982, 62(3): 219-223.
|
[26] |
REYNOLDS J, WEIR B S, COCKERHAM C C. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics, 1983, 105(3): 767-779.
doi: 10.1093/genetics/105.3.767
pmid: 17246175
|
[27] |
DHILLON B S, BOPPENMAIER J, POLLMER W G, HERRMAN R, MELCHINGER A E. Relationship of restriction fragment length polymorphisms among European maize inbreds with ear dry matter yield of their hybrids. Agricultural and Food Sciences, 1993, 90(93): 90059-V.
|
[28] |
FALCONER D, MACKAY T. Introduction to Quantitative Genetics (4th ed). United States: Benjamin Cummings, 1996:1231.
|
[29] |
ATZMON G, CASSUTO D, LAVI U, CAHANER A, ZEITLIN G, HILLEL J. DNA markers and crossbreeding scheme as means to select sires for heterosis in egg production of chickens. Animal Genetics, 2002, 33(2): 132-139.
pmid: 12047226
|
[30] |
BARBOSA A M M, GERALDI I O, BENCHIMOL L L, GARCIA A A F, SOUZA C L, SOUZA A P. Relationship of intra- and interpopulation tropical maize single cross hybrid performance and genetic distances computed from AFLP and SSR markers. Euphytica, 2003, 130(1): 87-99.
|
[31] |
GAVORA J S, FAIRFULL R W, BENKEL B F, CANTWELL W J, CHAMBERS J R. Prediction of heterosis from DNA fingerprints in chickens. Genetics, 1996, 144(2): 777-784.
doi: 10.1093/genetics/144.2.777
pmid: 8889538
|
[32] |
DIAS L A, PICOLI E A, ROCHA R B, ALFENAS A C. A priori choice of hybrid parents in plants. Genetics and Molecular Research, 2004, 3(3): 356-368.
|
[33] |
AMUZU-AWEH E N, BIJMA P, KINGHORN B P, VEREIJKEN A, VISSCHER J, AM VAN ARENDONK J, BOVENHUIS H. Prediction of heterosis using genome-wide SNP-marker data: Application to egg production traits in white Leghorn crosses. Heredity, 2013, 111(6): 530-538.
|
[34] |
YUE L X, ZHANG S J, ZHANG L K, LIU Y J, CHENG F, LI G L, ZHANG S F, ZHANG H, SUN R F, LI F. Heterotic prediction of hybrid performance based on genome-wide SNP markers and the phenotype of parental inbred lines in heading Chinese cabbage (Brassica rapa L. ssp. pekinensis). Scientia Horticulturae, 2022, 296: 110907.
|
[35] |
MINVIELLE F, COVILLE J L, KRUPA A, MONVOISIN J L, MAEDA Y, OKAMOTO S. Genetic similarity and relationships of DNA fingerprints with performance and with heterosis in Japanese quail lines from two origins and under reciprocal recurrent or within-line selection for early egg production. Genetics Selection Evolution, 32(3): 289-302.
|
[36] |
LV Q M, LI W G, SUN Z Z, OUYANG N, JING X, HE Q, WU J, ZHENG J K, ZHENG J T, TANG S Q, et al. Resequencing of 1, 143 indica rice accessions reveals important genetic variations and different heterosis patterns. Nature Communications, 2020, 11: 4778.
|
[37] |
GENG X L, QU Y J, JIA Y H, HE S P, PAN Z E, WANG L R, DU X M. Assessment of heterosis based on parental genetic distance estimated with SSR and SNP markers in upland cotton (Gossypium hirsutum L.). BMC Genomics, 2021, 22(1): 123.
|
[38] |
盛中华, 陈国宏, 潘玉春, 王起山, 张哲. 基于基因组遗传标记的上海白猪(上系)杂交优势预测分析. 上海农业学报, 2018, 34(6): 60-64.
|
|
SHENG Z H, CHEN G H, PAN Y C, WANG Q S, ZHANG Z. Prediction and analysis of heterosis in Shanghai white pigs(Shang) based on genome-wide genetic markers. Acta Agriculturae Shanghai, 2018, 34(6): 60-64. (in Chinese)
|
[39] |
徐忠, 张哲, 孙浩, 张向喆, 徐宁迎, 陈究成, 华坚青, 钟土木, 王起山, 潘玉春. 金华猪与杜洛克、长白猪、大白猪杂交的杂种优势预测. 中国畜牧杂志, 2019, 55(1): 64-67.
|
|
XU Z, ZHANG Z, SUN H, ZHANG X Z, XU N Y, CHEN J C, HUA J Q, ZHONG T M, WANG Q S, PAN Y C. Prediction of heterosis of Jinhua pig crossing with Duroc, Landrace Yorkshire White pig. Chinese Journal of Animal Science, 2019, 55(1): 64-67. (in Chinese)
|
[40] |
范婷婷, 王文翔, 马毅, 赵国耀, 徐凌洋, 陈燕, 张路培, 高会江, 李俊雅, 高雪. 西门塔尔牛、和牛与荷斯坦牛杂种优势预测及实际杂交效果分析. 畜牧兽医学报, 2022, 53(8): 2568-2577.
doi: 10.11843/j.issn.0366-6964.2022.08.015
|
|
FAN T T, WANG W X, MA Y, ZHAO G Y, XU L Y, CHEN Y, ZHANG L P, GAO H J, LI J Y, GAO X. Prediction and effect analysis of heterosis in Simmental, wagyu and Holstein. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2568-2577. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2022.08.015
|
[41] |
|
|
LI M Y, WANG L X, ZHAO F P. Research progress on machine learning for genomic selection in animals. Scientia Agricultura Sinica, 2023, 56(18): 3682-3692. doi: 10.3864/j.issn.0578-1752.2023.18.015. (in Chinese)
|
[42] |
WANG Q, YAN T, LONG Z B, HUANG L Y, ZHU Y, XU Y, CHEN X Y, PAK H, LI J Q, WU D Z, XU Y, HUA S J, JIANG L X. Prediction of heterosis in the recent rapeseed (Brassica napus) polyploid by pairing parental nucleotide sequences. PLoS Genetics, 2021, 17(11): e1009879.
|
[43] |
SHI T L, JIA K H, BAO Y T, NIE S, TIAN X C, YAN X M, CHEN Z Y, LI Z C, ZHAO S W, MA H Y, et al. High-quality genome assembly enables prediction of allele-specific gene expression in hybrid poplar. Plant Physiology, 2024, 195(1): 652-670.
|
[44] |
IBRAR D, KHAN S, RAZA M, NAWAZ M, HASNAIN Z, KASHIF M, RAIS A, GUL S, AHMAD R, GAAFAR A Z. Application of machine learning for identification of heterotic groups in sunflower through combined approach of phenotyping, genotyping and protein profiling. Scientific Reports, 2024, 14: 7333.
doi: 10.1038/s41598-024-58049-z
pmid: 38538706
|
[45] |
SUNNY A, CHAKRABORTY N R, KUMAR A, SINGH B K, PAUL A, MAMAN S, SEBASTIAN A, DARKO D A. Understanding gene action, combining ability, and heterosis to identify superior aromatic rice hybrids using artificial neural network. Journal of Food Quality, 2022, 2022: 9282733.
|
[46] |
商连光, 多重组学解析超级稻杂种优势遗传基础[D]. 北京: 中国农业科学院, 2019.
|
|
SHANG L G. Analysis of genetic basis of super rice heterosis by multiple recombination theory[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
|
[47] |
MONIR M M, ZHU J. Dominance and epistasis interactions revealed as important variants for leaf traits of maize NAM population. Frontiers in Plant Science, 2018, 9: 627.
doi: 10.3389/fpls.2018.00627
pmid: 29967625
|
[48] |
LOPES M S, BASTIAANSEN J W M, HARLIZIUS B, KNOL E F, BOVENHUIS H. A genome-wide association study reveals dominance effects on number of teats in pigs. PLoS ONE, 2014, 9(8): e105867.
|
[49] |
邵怀安. 通过加性和显性模型揭示小耳花与杜洛克F1代杂种优势的遗传基础[D]. 武汉: 华中农业大学, 2023.
|
|
SHAO H A.Revealing the genetic basis of heterosis in F1 Hybrids between Small-Ear Spotted and Duroc through additive and dominance models. Wuhan: Huazhong Agricultural University, 2023. (in Chinese)
|
[50] |
ESTRADA-REYES Z M, RAE D O, MATEESCU R G. Genome- wide scan reveals important additive and non-additive genetic effects associated with resistance to Haemonchus contortus in Florida Native sheep. International Journal for Parasitology, 2021, 51(7): 535-543.
|
[51] |
TARSANI E, KRANIS A, MANIATIS G, AVENDANO S, HAGER-THEODORIDES A L, KOMINAKIS A. Deciphering the mode of action and position of genetic variants impacting on egg number in broiler breeders. BMC Genomics, 2020, 21(1): 512.
doi: 10.1186/s12864-020-06915-1
pmid: 32709222
|
[52] |
CUI L L, YANG B, PONTIKOS N, MOTT R, HUANG L S. ADDO: a comprehensive toolkit to detect, classify and visualize additive and non-additive quantitative trait loci. Bioinformatics, 2020, 36(5): 1517-1521.
doi: 10.1093/bioinformatics/btz786
pmid: 31764991
|
[53] |
SUN D, WANG D, ZHANG Y, YU Y, XU G, LI J. Differential gene expression in liver of inbred chickens and their hybrid offspring. Animal Genetics, 2005, 36(3): 210-215.
pmid: 15932399
|
[54] |
YAO Y Y, NI Z F, ZHANG Y H, CHEN Y, DING Y H, HAN Z F, LIU Z Y, SUN Q X. Identification of differentially expressed genes in leaf and root between wheat hybrid and its parental inbreds using PCR-based cDNA subtraction. Plant Molecular Biology, 2005, 58(3): 367-384.
pmid: 16021401
|
[55] |
SWANSON-WAGNER R A, JIA Y, DECOOK R, BORSUK L A, NETTLETON D, SCHNABLE P S. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(18): 6805-6810.
|
[56] |
WU X W, LI R N, LI Q Q, BAO H G, WU C X. Comparative transcriptome analysis among parental inbred and crosses reveals the role of dominance gene expression in heterosis in Drosophila melanogaster. Scientific Reports, 2016, 6: 21124.
|
[57] |
孙新宇, 王珏, 凌遥, 鲍海港, 吴常信. 模式动物(果蝇)体重高低杂种优势组合的转录组差异表达分析. 中国畜牧杂志, 2022, 58(1): 91-97.
|
|
SUN X Y, WANG J, LING Y, BAO H G, WU C X. Heterosis of body weight in line crossing of Drosophila melanogaster. Chinese Journal of Animal Science, 2022, 58(1): 91-97. (in Chinese)
|
[58] |
GU H C, QI X, JIA Y X, ZHANG Z B, NIE C S, LI X H, LI J Y, JIANG Z H, WANG Q, QU L J. Inheritance patterns of the transcriptome in hybrid chickens and their parents revealed by expression analysis. Scientific Reports, 2019, 9: 5750.
doi: 10.1038/s41598-019-42019-x
pmid: 30962479
|
[59] |
ZHUO Z, LAMONT S J, ABASHT B. RNA-seq analyses identify additivity as the predominant gene expression pattern in F1 chicken embryonic brain and liver. Genes, 2019, 10(1): 27.
|
[60] |
MAI C N, WEN C L, XU Z Y, XU G Y, CHEN S R, ZHENG J X, SUN C J, YANG N. Genetic basis of negative heterosis for growth traits in chickens revealed by genome-wide gene expression pattern analysis. Journal of Animal Science and Biotechnology, 2021, 12(1): 52.
doi: 10.1186/s40104-021-00574-2
pmid: 33865443
|
[61] |
MAI C N, WEN C L, SUN C J, XU Z Y, CHEN S R, YANG N. Implications of gene inheritance patterns on the heterosis of abdominal fat deposition in chickens. Genes, 2019, 10(10): 824.
|
[62] |
WANG Y M, SUN Y Y, NI A X, LI Y L, YUAN J W, MA H, WANG P L, SHI L, ZONG Y H, ZHAO J M, BIAN S X, CHEN J L. Research Note: Heterosis for egg production and oviposition pattern in reciprocal crossbreeds of indigenous and elite laying chickens. Poultry Science, 2022, 101(12): 102201.
|
[63] |
ZHAO J M, YUAN J W, WANG Y M, NI A X, SUN Y Y, LI Y L, MA H, WANG P L, SHI L, GE P Z, BIAN S X, ZONG Y H, CHEN J L. Assessment of feed efficiency and its relationship with egg quality in two purebred chicken lines and their reciprocal crosses. Agriculture, 2022, 12(12): 2171.
|
[64] |
NI A X, CALUS M P L, BOVENHUIS H, YUAN J W, WANG Y M, SUN Y Y, CHEN J L. Genetic parameters, reciprocal cross differences, and age-related heterosis of egg-laying performance in chickens. Genetics Selection Evolution, 2023, 55(1): 87.
doi: 10.1186/s12711-023-00862-7
pmid: 38062365
|
[65] |
WANG Y M, YUAN J W, SUN Y Y, LI Y L, WANG P L, SHI L, NI A X, ZONG Y H, ZHAO J M, BIAN S X, MA H, CHEN J L. Genetic basis of sexual maturation heterosis: insights from ovary lncRNA and mRNA repertoire in chicken. Frontiers in Endocrinology, 2022, 13: 951534.
|
[66] |
WANG Y M, YUAN J W, SUN Y Y, NI A X, ZHAO J M, LI Y L, WANG P L, SHI L, ZONG Y H, GE P Z, BIAN S X, MA H, CHEN J L. Genome-wide circular RNAs signatures involved in sexual maturation and its heterosis in chicken. Journal of Integrative Agriculture, 2023, doi: 10.1016/j.jia.2023.05.026.
|
[67] |
YUAN J W, LI Q, SUN Y Y, WANG Y M, LI Y L, YOU Z J, NI A X, ZONG Y H, MA H, CHEN J L. Multi-tissue transcriptome profiling linked the association between tissue-specific circRNAs and the heterosis for feed intake and efficiency in chicken. Poultry Science, 2024, 103(7): 103783.
|
[68] |
YUAN J W, ZHAO J M, SUN Y Y, WANG Y M, LI Y L, NI A X, ZONG Y H, MA H, WANG P L, SHI L, CHEN J L. The mRNA-lncRNA landscape of multiple tissues uncovers key regulators and molecular pathways that underlie heterosis for feed intake and efficiency in laying chickens. Genetics Selection Evolution, 2023, 55(1): 69.
doi: 10.1186/s12711-023-00834-x
pmid: 37803296
|
[69] |
ISA A M, SUN Y Y, LI Y L, WANG Y M, NI A X, YUAN J W, MA H, SHI L, TESFAY H H, FAN J, et al. microRNAs with non-additive expression in the ovary of hybrid hens target genes enriched in key reproductive pathways that may influence heterosis for egg laying traits. Frontiers in Genetics, 2022, 13: 974619.
|
[70] |
ISA A M, SUN Y Y, SHI L, JIANG L L, LI Y L, FAN J, WANG P L, NI A X, HUANG Z Y, MA H, et al. Hybrids generated by crossing elite laying chickens exhibited heterosis for clutch and egg quality traits. Poultry Science, 2020, 99(12): 6332-6340.
doi: 10.1016/j.psj.2020.08.056
pmid: 33248549
|
[71] |
ISA A M, SUN Y Y, WANG Y M, LI Y L, YUAN J W, NI A X, MA H, SHI L, TESFAY H H, ZONG Y H, et al. Transcriptome analysis of ovarian tissues highlights genes controlling energy homeostasis and oxidative stress as potential drivers of heterosis for egg number and clutch size in crossbred laying hens. Poultry Science, 2024, 103(1): 103163.
|
[72] |
HUANG Q, WEN C L, GU S, JIE Y C, LI G Q, YAN Y Y, TIAN C Y, WU G Q, YANG N. Synergy of gut microbiota and host genome in driving heterosis expression of chickens. Journal of Genetics and Genomics, 2024, 51(10): 1121-1134.
|
[73] |
LI D Y, HUANG Z Y, SONG S H, XIN Y Y, MAO D H, LV Q M, ZHOU M, TIAN D M, TANG M F, WU Q, et al. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(41): E6026-E6035.
|
[74] |
YE J, LIANG H B, ZHAO X Y, LI N, SONG D J, ZHAN J P, LIU J, WANG X F, TU J X, VARSHNEY R K, SHI J Q, WANG H Z. A systematic dissection in oilseed rape provides insights into the genetic architecture and molecular mechanism of yield heterosis. Plant Biotechnology Journal, 2023, 21(7): 1479-1495.
|
[75] |
GAUR U, LI K, MEI S Q, LIU G S. Research progress in allele-specific expression and its regulatory mechanisms. Journal of Applied Genetics, 2013, 54(3): 271-283.
doi: 10.1007/s13353-013-0148-y
pmid: 23609142
|
[76] |
BOTET R, KEURENTJES J J B. The role of transcriptional regulation in hybrid vigor. Frontiers in Plant Science, 2020, 11: 410.
doi: 10.3389/fpls.2020.00410
pmid: 32351526
|
[77] |
SHAO L, XING F, XU C H, ZHANG Q H, CHE J, WANG X M, SONG J M, LI X H, XIAO J H, CHEN L L, et al. Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(12): 5653-5658.
|
[78] |
QUAN J P, YANG M, WANG X W, CAI G Y, DING R R, ZHUANG Z W, ZHOU S P, TAN S X, RUAN D L, WU J J, et al. Multi-omic characterization of allele-specific regulatory variation in hybrid pigs. Nature Communications, 2024, 15: 5587.
doi: 10.1038/s41467-024-49923-5
pmid: 38961076
|
[79] |
MEUWISSEN T E, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157(4): 1819-1829.
doi: 10.1093/genetics/157.4.1819
pmid: 11290733
|
[80] |
MEUWISSEN T, HAYES B, GODDARD M. Accelerating improvement of livestock with genomic selection. Annual Review of Animal Biosciences, 2013, 1: 221-237.
doi: 10.1146/annurev-animal-031412-103705
pmid: 25387018
|
[81] |
HEIDARITABAR M, WOLC A, ARANGO J, ZENG J, SETTAR P, FULTON J E, O’SULLIVAN N P, BASTIAANSEN J W M, FERNANDO R L, GARRICK D J, DEKKERS J C M. Impact of fitting dominance and additive effects on accuracy of genomic prediction of breeding values in layers. Journal of Animal Breeding and Genetics, 2016, 133(5): 334-346.
doi: 10.1111/jbg.12225
pmid: 27357473
|
[82] |
ALILOO H, PRYCE J E, GONZÁLEZ-RECIO O, COCKS B G, HAYES B J. Accounting for dominance to improve genomic evaluations of dairy cows for fertility and milk production traits. Genetics Selection Evolution, 2016, 48(1): 8.
|
[83] |
ESFANDYARI H, BIJMA P, HENRYON M, CHRISTENSEN O F, SØRENSEN A C. Genomic prediction of crossbred performance based on purebred Landrace and Yorkshire data using a dominance model. Genetics Selection Evolution, 2016, 48(1): 40.
doi: 10.1186/s12711-016-0220-2
pmid: 27276993
|
[84] |
TAN C, WU Z F, REN J L, HUANG Z L, LIU D W, HE X Y, PRAKAPENKA D, ZHANG R, LI N, DA Y, HU X X. Genome-wide association study and accuracy of genomic prediction for teat number in Duroc pigs using genotyping-by-sequencing. Genetics, Selection, Evolution, 2017, 49(1): 35.
doi: 10.1186/s12711-017-0311-8
pmid: 28356075
|
[85] |
AKANNO E C, ABO-ISMAIL M K, CHEN L H, CROWLEY J J, WANG Z Q, LI C X, BASARAB J A, MACNEIL M D, PLASTOW G S. Modeling heterotic effects in beef cattle using genome-wide SNP-marker genotypes. Journal of Animal Science, 2018, 96(3): 830-845.
doi: 10.1093/jas/skx002
pmid: 29373745
|
[86] |
VARONA L, LEGARRA A, TORO M A, VITEZICA Z G. Non-additive effects in genomic selection. Frontiers in Genetics, 2018, 9: 78.
doi: 10.3389/fgene.2018.00078
pmid: 29559995
|
[87] |
GONZÁLEZ-DIÉGUEZ D, TUSELL L, BOUQUET A, LEGARRA A, VITEZICA Z G. Purebred and crossbred genomic evaluation and mate allocation strategies to exploit dominance in pig crossbreeding schemes. G3 Genes|Genomes|Genetics, 2020, 10(8): 2829-2841.
|
[88] |
FERNÁNDEZ J, VILLANUEVA B, TORO M A. Optimum mating designs for exploiting dominance in genomic selection schemes for aquaculture species. Genetics Selection Evolution, 2021, 53(1): 14.
doi: 10.1186/s12711-021-00610-9
pmid: 33568069
|
[89] |
GONZÁLEZ-DIÉGUEZ D, TUSELL L, CARILLIER-JACQUIN C, BOUQUET A, VITEZICA Z G. SNP-based mate allocation strategies to maximize total genetic value in pigs. Genetics Selection Evolution, 2019, 51(1): 55.
|
[90] |
DUENK P, BIJMA P, CALUS M P L, WIENTJES Y C J, VAN DER WERF J H J. The impact of non-additive effects on the genetic correlation between populations. G3 Genes|Genomes|Genetics, 2020, 10(2): 783-795.
|
[91] |
CALUS M P L, WIENTJES Y C J, BOS J, DUENK P. Animal board invited review: The purebred-crossbred genetic correlation in poultry. Animal, 2023, 17(11): 100997.
|
[92] |
WIENTJES Y C J, CALUS M P L. BOARD INVITED REVIEW: the purebred-crossbred correlation in pigs: A review of theory, estimates, and implications. Journal of Animal Science, 2017, 95(8): 3467-3478.
doi: 10.2527/jas.2017.1669
pmid: 28805893
|
[93] |
DUENK P, BIJMA P, WIENTJES Y C J, CALUS M P L. Predicting the purebred-crossbred genetic correlation from the genetic variance components in the parental lines. Genetics Selection Evolution, 2021, 53(1): 10.
doi: 10.1186/s12711-021-00601-w
pmid: 33541267
|
[94] |
DUENK P, BIJMA P, WIENTJES Y C J, CALUS M P L. Review: Optimizing genomic selection for crossbred performance by model improvement and data collection. Journal of Animal Science, 2021, 99(8): skab205.
|
[95] |
朱家华, 沈俊男, 伊旭东, 李睿, 喻赫, 丁荣荣, 庞卫军. 杂种优势形成机制和预测方法及其在猪生产中的应用与展望. 遗传, 2024, 46(8): 627-639.
|
|
ZHU J H, SHEN J N, YI X D, LI R, YU H, DING R R, PANG W J. Heterosis formation mechanism, prediction methods, and their application and prospect in pig production. Hereditas(Beijing), 2024, 46(8): 627-639. (in Chinese)
|
[96] |
|
|
LIU Z G, WANG B Y, MU Y L, WEI H, CHEN J H, LI K. Breeding by molecular writing (BMW): the future development of animal breeding. Scientia Agricultura Sinica, 2018, 51(12): 2398-2409. doi: 10.3864/j.issn.0578-1752.2018.04.016. (in Chinese)
|
[97] |
|
|
JIA G Q, DIAO X M. Current status and perspectives of innovation studies related to foxtail millet seed industry in China. Scientia Agricultura Sinica, 2022, 55(4): 653-665. doi: 10.3864/j.issn.0578-1752.2022.04.003. (in Chinese)
|