[1] Birchler J A, Yao H, Chudalayandi S, VAIMAN D, VEITIA R A. Heterosis. The Plant Cell, 2010, 22: 2105-2112.
[2] Zhou G, Chen Y, Yao W, ZHANG C J, XIE W B, HUA J P, XING Y Z, XIAO J H, ZHANG Q F. Genetic composition of yield heterosis in an elite rice hybrid. Proceedings of the National Academy of Sciences of the USA, 2012, 109(39): 15847-15852.
[3] Duvick D. Heterosis: feeding people and protecting natural resources//Coors J, Pandey S. The Genetics and Exploitation of Heterosis in Crops. CSSA, Madison, WI. 1999: 19-29.
[4] Shull G H. The composition of a field of maize. Journal of Heredity, 1908, 4: 296-301.
[5] Bruce A B. The Mendelian theory of heredity and the augmentation of vigor. Science, 1910, 32: 627-628.
[6] Jones D F. Dominance of linked factors as a means of accounting for heterosis. Genetics, 1917, 2: 466-479.
[7] East E M. Heterosis. Genetics, 1936, 21: 375-397.
[8] Yu S B, Li J X, Xu C G, TAN Y F, GAO Y J, LI X H, ZHANG Q F, MAROO M A S. Importance of epistasis as the genetic basis of the heterosis in an elite rice hybrid. Proceedings of the National Academy of Sciences of the USA, 1997, 94: 9226-9231.
[9] Stuber C W, Lincoln S W, Wolff D W, HELENTJARIS T, LANDER E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823-839.
[10] Melchinger A E, Utz H F, Schön C C. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics, 1998, 149: 383-403.
[11] Hua J P, Xing Y Z, Wei W R, XU C G, SUN X L, YU S B, ZHANG Q F. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proceedings of the National Academy of Sciences of the USA, 2003, 100: 2574-2579.
[12] Tang J H, Yan J B, Ma X Q, TENG W T, WU W R, DAI J R, DHILLON B S, MELCHINGER A E, LI J S. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theoretical and Applied Genetics, 2010, 120: 333-340.
[13] Semel Y, Nissenbaum J, Menda N, ZINDER M, KRIEGER U, ISSMAN N, PLEBAN T, LIPPMAN Z, GUR A, ZAMIR D. Overdominant quantitative trait locus for yield and fitness in tomato. Proceedings of the National Academy of Sciences of the USA, 2006, 103: 12981-12986.
[14] Krieger U, Lippman Z B, Zamir D. The flowering gene single flower truss drives heterosis for yield in tomato. Nature Genetics, 2010, 42(5): 459-463.
[15] Guo X, Guo Y, Ma J, WANG F, SUN M Z, GUI L J, ZHOU J J, SONG X L, SUN X Z, ZHANG T Z. Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton. Journal of Integrative Plant Biology, 2013, 55: 759-774.
[16] Meyer R C, Kusterer B, Lisec J, STEINFATH M, BECHER M, SCHARR H, MELCHINGER A E, SELBIG J, SCHURR U, WILLMITZER L, ALTMANN T. QTL analysis of early stage heterosis for biomass in Arabidopsis. Theoretical and Applied Genetics, 2010, 120(2): 227-237.
[17] Wang Z Q, Yu C Y, Liu X, LIU S J, YIN C B, LIU L L, LEI J G, JING L, YANG C, CHEN L M, ZHAI H Q, WAN J M. Identification of Indica rice chromosome segments for the improvement of Japonica inbreds and hybrids. Theoretical and Applied Genetics, 2012, 124(7): 1351-1364.
[18] Lu H, Romero-Severson J, Bernardo R. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theoretical and Applied Genetics, 2003, 107: 494-502.
[19] Larièpe A, Mangin B, Jasson S, combes v, dumas f, jamin p, larlagon c, jollvot d, madur d, flevet j, gallals a, dubreull p, charcosset a, moreau l. The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Genetics, 2012, 190: 795-811.
[20] Tang J H, Ma X Q, Teng W T, yan j b, wu w r, dai j r, li j s. Detection of quantitative trait loci and heterosis for plant height in maize in “immortalized F2” (IF2) population. Chinese Science Bulletin, 2006, 51(24): 2864-2869.
[21] 毛克举, 李卫华, 付志远, 丁冬, 汤继华. 玉米自交系许178背景的综3染色体单片段代换系的构建. 河南农业大学学报, 2013, 47(1): 6-9, 15.
Mao K J, Li W H, Fu Z Y, DING D, TANG J H. Development of a set of single segment substitution lines of an elite inbred line Zong 3 on the genetic background Xu 178 in maize (Zea mays L.). Journal of Henan Agricultural University, 2013, 47(1): 6-9, 15. (in Chinese)
[22] Ma X Q, Tang J H, Teng W T, YAN J B, MENG Y J, LI J S. Epistatic interaction is an important genetic basis of grain yield and its components in maize. Molecular Breeding, 2007, 20: 41-51.
[23] Eshed Y, Zamir D. An introgression line population of Lyeopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield associated QTL. Genetics, 1995, 141: 1147-1162.
[24] Law C N, Worland A J. Inter-varietal chromosome substitution lines in wheat revisited. Euphytica, 1996, 89: 1-10.
[25] Cheema K K, Bains N S, Mangat G S, DAS A, VIKAL Y, BRAR D S, KHUSH G S, SINGH K. Development of high yielding IR64 × Oryza rufipogon (Griff.) introgression lines and identification of introgressed alien chromosome segments using SSR markers. Euphytica, 2008, 160: 401-409.
[26] 陈春侠, 陆明洋, 尚爱兰, 王玉民, 席章营. 基于单片段代换系的玉米百粒重QTL分析. 作物学报, 2013, 39(9): 1562-1568.
Chen C X, Lu M Y, Shang A L, WANG Y M, XI Z Y. Analysis of QTL for 100 kernel weight using chromosome single segment substitution lines in maize. Acta Agronomica Sincia, 2013, 39(9): 1562-1568. (in Chinese)
[27] Wei X Y, Lu X M, Zhang Z H, XU M M. MAO K J, LI W H, WEI F, SUN P, TANG J H. Genetic analysis of heterosis for maize grain yield and its components in a set of SSSL testcross populations. Euphytica, 2016: 1-13.
[28] 彭倩, 薛亚东, 张向歌, 李慧敏, 孙高阳, 李卫华, 谢慧玲, 汤继 华. 利用单片段代换系测交群体定位玉米产量相关性状的杂种优势位点. 作物学报, 2016, 42(4): 482-491.
Peng Q, Xue Y D, Zhang X g, LI H M, SUN G Y, LI W H, XIE H L, TANG J H. Identification of heterotic loci for yield and ear traits using cssl test population in maize. Acta Agronomica Sinica, 2016, 42(4): 482-491. (in Chinese)
[29] 郭战勇, 吕盼晴, 张向歌, 孙高阳, 王洪秋, 李卫华, 付志远, 汤继华. 利用单片段代换系的测交群体定位玉米籽粒性状杂种优势位点. 中国农业科学, 2016, 49(4): 621-631.
Guo Z Y, LÜ P Q, Zhang X G, SUN G Y, WANG H Q, LI W H, FU Z Y, TANG J H. Identification of heterotic loci for kernel related traits using a maize introgression lines test population. Scientia Agricultura Sinica, 2016, 49(4): 621-631. (in Chinese)
[30] Wei X Y, Wang B, Peng Q, WEI F, MAO K J, ZHANG X G, SUN P, LIU Z H, TANG J H. Heterotic loci for various morphological traits of maize detected using a single segment substitution lines test-cross population. Molecular Breeding, 2015, 35(3): 1-13.
[31] Semel Y, Nissenbaum J, Menda N, MENDA N, ZINDER M, KRIEGER U, ISSMAN N, PLEBAN T, LIPPMAN Z, GUR A, ZAMIR D. Overdominant quantitative trait loci for yield and fitness in tomato. Proceedings of the National Academy of Sciences of the USA, 2006, 103(35): 12981-12986.
[32] Meyer R C, Kusterer B, Lisec J, STEINFATH M, BECHER M, SCHARR H, MELCHINGER A ,SELBIG J, SCHURR U, WILLMIIZER L, ALTMANN T. QTL analysis of early stage heterosis for biomass in Arabidopsis. Theoretical and Applied Genetics, 2010, 120(2): 227-237.
[33] 宋方威, 彭惠茹, 刘婷, 张义荣, 孙其信, 倪中福. 利用三重测交群体剖析玉米株高与穗位高杂种优势的遗传学基础. 作物学报, 2011, 37(7): 1186-1195.
Song F W, Peng H R, Liu T, ZHANG Y R, SUN Q X, NI Z F. Heterosis for plant height and ear position in maize revealed by quantitative trait loci analysis with triple testcross design. Acta Agronomica Sinica, 2011, 37(7): 1186-1195. (in Chinese)
[34] Peiffer J A, Romay M C, Gore M A, FLINT-GARCIA S A, ZHANG Z W, MILLARD M J, GARDNER C, MCMULLEN M D, HOLLAND J B, BRADBURY P J, BUCKLER E. The genetic architecture of maize height. Genetics, 2014, 196: 1337-1356.
[35] Langdale J. The then and now of maize leaf development. Maydica, 2005, 50(3): 459-467.
[36] Li D, Wang X F, Zhang X B, CHEN Q Y, XU G H, XU D Y, WANG C L, LIANG Y M, WU L S, HUANG C, TIAN J, WU Y Y, TIAN F. The genetic architecture of leaf number and its genetic relationship to flowering time in maize. New Phytologist, 2015, 210: 256-268.
[37] Flint-Garcia S A, Thuillet A C, Yu J, PRESSOIR S M, MITCHELL S E, DOEBLEY J, KRESOVICH S, GOODMAN M M, BUCKLER E S. Maize association population: a high-resolution platform for quantitative trait locus dissection. The Plant Journal, 2005, 44: 1054-1064.
[38] Xue W Y, Xing Y Z, Weng X Y , ZHAO Y, TANG W J, WANG L, ZHOU H J, YU S B, XU C G, LI X H, ZHANG Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature genetics, 2008, 40(6): 761-767.
[39] Guo T T, Yang N, Tong H, PAN Q C, YANG X H, TANG J H, WANG J K, LI J S, YAN J B. Genetic basis of grain yield heterosis in an “immortalized F2” maize population. Theoretical and Applied Genetics, 2014, 127: 2149-2158.
[40] 梁康迳. 基因型x环境互作效应对水稻穗部性状杂种优势影响. 应用生态学报, 1999(6): 683-688.
Liang K J. Interactive effect of genotype and environment on heterosis of panicle traits of rice (Oryza sativa). Chinese Journal of Applied Ecology, 1999(6): 683-688. (in Chinese) |