中国农业科学 ›› 2024, Vol. 57 ›› Issue (24): 4978-4989.doi: 10.3864/j.issn.0578-1752.2024.24.012

• 畜牧·兽医 • 上一篇    下一篇

三谱系重组猪繁殖与呼吸综合征病毒株分离鉴定与基因组特征分析

李欣蕾1(), 孙久英1, 杨程1, 程宁1, 王凯月1, 王欢欢2, 程雪娇3, 赵健3, 孙英峰1()   

  1. 1 天津农学院动物科学与动物医学学院,天津 300384
    2 天津农垦康嘉生态养殖有限公司,天津 300384
    3 天津市中升挑战生物科技有限公司,天津 300380
  • 收稿日期:2024-05-06 接受日期:2024-10-28 出版日期:2024-12-16 发布日期:2024-12-23
  • 通信作者:
    孙英峰,E-mail:.
  • 联系方式: 李欣蕾,E-mail:1184047640@qq.com。
  • 基金资助:
    天津市科技支撑计划重点项目(22YFZCSN00100); 天津市优秀农业科技特派员项目(22zycgsn00570); 天津市科技计划项目(22YDTPJC00420)

Isolation, Identification and Genetic Variation of a Three-Lineage Strain Recombined Porcine Reproductive and Respiratory Syndrome Virus

LI XinLei1(), SUN JiuYing1, YANG Cheng1, CHENG Ning1, WANG KaiYue1, WANG HuanHuan2, CHENG XueJiao3, ZHAO Jian3, SUN YingFeng1()   

  1. 1 College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384
    2 Tianjin Nongken Kangjia Ecological Breeding Co., Ltd, Tianjin 300384
    3 Tianjin Zhongsheng Challenge Biotechnology Co., Ltd, Tianjin 300380
  • Received:2024-05-06 Accepted:2024-10-28 Published:2024-12-16 Online:2024-12-23

摘要:

【目的】通过对天津地区某疑似猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus, PRRSV)发病断奶仔猪肺脏组织进行病毒分离鉴定以及全基因组分子特征分析,为猪场疫病防控提供基础数据。【方法】采集发病猪肺组织检测并将PRRSV核酸阳性样品接种于猪肺泡巨噬细胞(porcine alveolar macrophages, PAMs),采用有限稀释法纯化分离病毒,对已纯化的病毒进行间接免疫荧光试验(indirect immunofluorescence assay, IFA)鉴定,利用重叠引物RT-PCR分段扩增并克隆测序获得全基因组序列,并通过生物学分析软件分别对分离毒株的核苷酸与氨基酸序列进行同源性、遗传演化与重组事件分析。【结果】成功分离1株PRRSV毒株,将其命名为N1;该毒株全基因组全长大小为15 016 bp(不含polyA尾),核苷酸同源性比对分析显示与谱系8.3代表毒株JXA1全基因组同源性最高,为90.0%,与其他谱系各代表毒株的全基因组同源性为85.0%—90.0%,其中ORF2a、ORF2b、3′UTR区域同源性与谱系3(QYYZ-like)毒株最高达93.7%,与谱系1.8(NADC30-like)毒株在ORF5-ORF7区域同源性最高达96.2%,其余区域均与谱系8.3(JXA1-like)毒株有高度同源性,同时N1毒株的Nsp2区域具有与谱系1.8(NADC30-like)毒株特征一致的131(111+1+19aa)个不连续氨基酸缺失特征;GP5蛋白的预测毒力位点及主要中和抗原表位与谱系1(NADC34-like、NADC30-like)PRRSV毒株相同,但位于N33、N44和N51的3个N-糖基化位点存在一定程度突变,这些潜在的糖基化位点突变很可能造成病毒致病力差异,并导致病毒免疫逃逸发生;根据ORF5及全基因组序列构建的遗传进化树基因分型显示,基于N1毒株ORF5基因遗传进化树与谱系1.8(NADC30-like)毒株亲缘较近,处于同一分支,但基于N1毒株全基因组遗传进化树与谱系8.3(JXA1-like)毒株处于同一分支,提示该毒株存在重组可能性;通过Simplot和RDP4.0等多种生物信息学软件的重组分析显示,该毒株是1株以谱系8.3(JXA1-like)为亲本毒株,谱系1.8(NADC30-like)和谱系3(QYYZ-like)为次本毒株的多谱系重组毒株,共存在13个重组事件,其中主要亲本毒株JXA1-like与NADC30-like毒株和QYYZ-like毒株可能分别在A(1—421 nt)、B(422—1 735 nt)、C(1 736—3 598 nt)、D(3 599—4 439 nt)、E(4 440—5 762 nt)、F(5 763—6 451 nt)、G(6 502—7 226 nt)、H(7 227—8 295 nt)、I(8 296—9 312 nt)、J(9 313—11 536 nt)、K(11 537—12 854 nt)、L(12 855—13 859 nt)、M(13 860—15 016 nt)处发生了重组,重组断点位于基因组的 Nsp1、Nsp2、Nsp3、Nsp4、Nsp7、Nsp9、Nsp12、ORF3和ORF5中。【结论】试验分离鉴定的PRRSV N1毒株是一株以谱系8.3(JXA1-like)毒株为主要亲本的PRRSV三谱系重组毒株,且存在广泛的、复杂的重组现象,即谱系1.8、谱系3、谱系8.3三个谱系重组,可为天津地区的猪繁殖与呼吸综合征综合防控提供参考。

关键词: 猪繁殖与呼吸综合征病毒, 分离鉴定, 重组, 遗传演化分析

Abstract:

【Objective】This study aimed to provide basic data for prevention and control of swine diseases in pig farms through analysis about molecular characterization of PRRSV isolated from the lungs of diseased piglets in pig farm in Tianjin. 【Method】Lung tissues of diseased piglets were collected, and PRRSV nucleic acid positive samples were inoculated into porcine alveolar macrophages (PAMs) for virus isolation and identification. The virus was purified by limited dilution method and identified by indirect immunofluorescence assay (IFA). Then, it was segmented amplification using overlapping primers of RT-PCR, and whole genome sequence was obtained by cloning. The nucleotide and amino acid sequences of N1 strain were analyzed for homology, genetic evolution, and recombination events using biological analysis software. 【Result】The PRRSV strain, named N1, was successfully isolated with the whole genome length of 15016 bp, excluding polyA tail. The homology analysis based on whole genome sequences showed that the homologous of N1 strain was 85.0%-90.0% to other lineage PRRSV strains, with the highest homology of 90.0% to lineage 8.3, the representative strain of JXA1, and the N1 isolate shared 93.7% identity with lineage 3 (QYYZ-like) in the ORF2a, ORF2b, and 3'UTR regions, and shared 96.2% identity with in the ORF5-ORF7 regions with lineage 1.8 (NADC30-like), while the rest of the regions had a high degree of homology with sublineage 8.3 (JXA1-like). It had similar 131 (111+1+19aa) discontinuous amino acid deletion pattern with lineage 1.8 (NADC30-like) in Nsp2-coding region. The virulence sites and major neutralizing antigenic epitopes of GP5 protein were identical to lineage 1 (NADC34-like, NADC30-like), but three N-glycosylation sites locating at N33, N44 and N51 were mutated to a certain extent compared with the other representative strains. These potential glycosylation sites were likely to contribute to the differences in viral virulence and led to the occurrence of viral immune escape. According to the genetic phylogenetic tree constructed based on ORF5 and whole genome sequences, the genetic evolution tree based on the ORF5 gene showed that N1 strain was closer to lineage 1.8 (NADC30-like) and belonged to the same branch, but N1 strain was in the same branch as lineage 8.3 (JXA1-like) strain based on whole genome genetic evolution tree, suggesting the possibility of this strain recombination. Recombination events of the N1 strain were analyzed by Simplot and RDP4.0 softwares, and the results of the recombination analyses showed that the N1 was a multiple recombinant virus from NADC30-, JXA1-, and QYYZ-Like strains with 13 recombination events and recombinant fragments located at A(1-421 nt), B(422-1 735 nt), C(736-3 598 nt), D(3 599-4 439 nt), E(4 440-5 762 nt), F(5 763-6 451 nt), G(6 502-7 226 nt), H(7 227-8 295 nt), I(8 296-9 312 nt), J(9 313-11 536 nt), K(11 537-12 854 nt), L(12 855-13 859 nt), M(13 860- 15 016 nt) with recombinant breakpoints in Nsp1, Nsp2, Nsp3, Nsp4, Nsp7, Nsp9, Nsp12, ORF3, and ORF5. 【Conclusion】The PRRSV N1 strain isolated in this experiment was a three-lineage recombinant strain of PRRSV with the sublineage 8.3 (JXA1-like) strain as its main parent, it exhibited extensive and complex recombination patterns between sublineage 1.8, lineage 3, and sublineage 8.3, and the results provided the reference for the comprehensive prevention and control of porcine reproductive and respiratory syndrome in Tianjin area.

Key words: PRRSV, isolation and identification, recombination, genetic evolution analysis