中国农业科学 ›› 2024, Vol. 57 ›› Issue (22): 4483-4494.doi: 10.3864/j.issn.0578-1752.2024.22.008

• 植物保护 • 上一篇    下一篇

线粒体编码基因ND6ATP6介导锈赤扁谷盗低温耐受性形成的机制

袁国庆(), 陈二虎(), 唐培安   

  1. 南京财经大学食品科学与工程学院/江苏省现代粮食流通与安全协同创新中心/江苏高校粮油质量安全控制及深加工重点实验室,南京 210023
  • 收稿日期:2024-07-13 接受日期:2024-08-24 出版日期:2024-11-16 发布日期:2024-11-22
  • 通信作者:
    陈二虎,E-mail:
  • 联系方式: 袁国庆,E-mail:yuangq1001@163.com。
  • 基金资助:
    国家重点研发计划(2023YFD1701203); 国家重点研发计划(2021YFD2100604); 江苏省重点研发计划(BE2022377); 国家自然科学基金(32001915); 国家自然科学基金(32272388); 江苏高校优势学科建设工程资助项目(YXK2103)

The Mechanisms of Mitochondrial Protein-Coding Genes ND6 and ATP6 in Regulating Cold Tolerance of Cryptolestes ferrugineus

YUAN GuoQing(), CHEN ErHu(), TANG PeiAn   

  1. College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety of Jiangsu Province/Key Laboratory of Grains and Oils Quality Control and Processing of Jiangsu Province, Nanjing University of Finance and Economics, Nanjing 210023
  • Received:2024-07-13 Accepted:2024-08-24 Published:2024-11-16 Online:2024-11-22

摘要:

【背景】低温可以引起变温动物的适应性反应,其中储粮重要害虫锈赤扁谷盗(Cryptolestes ferrugineus)对低温环境展现出极强的适应能力。线粒体编码基因对维持生物体的呼吸代谢和ATP合成至关重要,其在昆虫中具有多种功能,然而线粒体基因在昆虫中的低温适应性功能知之甚少。【目的】明确线粒体编码基因在储粮害虫锈赤扁谷盗低温适应性形成过程中的作用。【方法】测定两个锈赤扁谷盗地理种群ST(石塘)和CK(长康)试虫在致死低温(-20 ℃)下的耐受性;利用CO2检测仪和ATP含量试剂盒测定ST和CK种群锈赤扁谷盗的呼吸速率和ATP含量;通过RT-qPCR技术测定ST和CK种群锈赤扁谷盗之间13个线粒体编码基因的相对表达水平;利用RNA干扰(RNA interference,RNAi)技术沉默锈赤扁谷盗关键线粒体编码基因ND6ATP6,并分析ND6ATP6被有效沉默后锈赤扁谷盗的另外12个线粒体编码基因表达水平、呼吸速率、ATP含量以及低温耐受性变化情况。【结果】锈赤扁谷盗CK种群的低温耐受性高于ST种群,而CK种群的呼吸速率和ATP含量仅为ST种群的58.68%和62.54%,并且CK种群除ND3外的12个线粒体编码基因表达水平均显著低于ST种群。ST和CK种群的低温耐受性与生理指标(呼吸速率、ATP含量和线粒体编码基因表达水平)之间存在负相关关系。通过饲喂dsRNA有效沉默关键线粒体编码基因ND6ATP6后,锈赤扁谷盗呼吸速率和ATP含量显著降低,低温耐受性显著增强。【结论】线粒体编码基因ND6ATP6调控能量代谢参与锈赤扁谷盗低温耐受性形成。

关键词: 锈赤扁谷盗, 低温耐受性, 能量代谢, 线粒体编码基因, RNA干扰

Abstract:

【Background】Low temperatures can induce adaptive responses in ectothermic animals, the grain pest Cryptolestes ferrugineus has exhibited a remarkable adaptability to cold environment. Mitochondrial protein-coding genes are crucial for maintaining respiration metabolism and ATP synthesis in organisms, and they play various functions in insects. However, the role of these genes in cold adaptation is poorly understood.【Objective】The purpose of this study is to elucidate the roles of mitochondrial protein-coding genes in the formation of cold tolerance of C. ferrugineus.【Method】The cold tolerance of C. ferrugineus ST and CK populations was determined at a lethal low temperature (-20 ℃). The respiration rate and ATP content of C. ferrugineus ST and CK populations were measured using a CO2 detector and an ATP content assay kit. The relative expression levels of 13 mitochondrial protein-coding genes between the ST and CK populations were assessed by using RT-qPCR. RNA interference (RNAi) technology was employed to knock down the key mitochondrial protein-coding genes ND6 and ATP6 in C. ferrugineus, and then the expression levels of the remaining 12 mitochondrial protein-coding genes, respiration rate, ATP content, and changes in cold tolerance were explored after effective silencing of ND6 and ATP6.【Result】The cold tolerance of C. ferrugineus CK population was higher than that of the ST population, while the respiration rate and ATP content of the CK population were only 58.68% and 62.54% of those in the ST population, respectively. Additionally, the expression levels of 12 mitochondrial protein-coding genes (except ND3) in the CK population were significantly lower than those in the ST population. These results suggested a negative correlation between cold tolerance and physiological indicators (respiration rate, ATP content, and the expression levels of mitochondrial protein-coding genes). When the key mitochondrial protein-coding genes ND6 and ATP6 were effectively silenced via dsRNA feeding, the respiration rate and ATP content were significantly reduced, while cold tolerance in C. ferrugineus was significantly enhanced.【Conclusion】The mitochondrial protein-coding genes ND6 and ATP6 are involved in the formation of cold tolerance by regulating energy metabolism in C. ferrugineus.

Key words: Cryptolestes ferrugineus, cold tolerance, energy metabolism, mitochondrial protein-coding gene, RNA interference (RNAi)