中国农业科学 ›› 2020, Vol. 53 ›› Issue (24): 4982-4991.doi: 10.3864/j.issn.0578-1752.2020.24.002
收稿日期:
2020-03-07
接受日期:
2020-04-20
出版日期:
2020-12-16
发布日期:
2020-12-28
通讯作者:
王磊,张兰
作者简介:
姚兴兰,E-mail: 基金资助:
YAO XingLan(),YANG WenZhu,LUO YanZhong,CHEN RuMei,WANG Lei(
),ZHANG Lan(
)
Received:
2020-03-07
Accepted:
2020-04-20
Online:
2020-12-16
Published:
2020-12-28
Contact:
Lei WANG,Lan ZHANG
摘要:
【目的】玉米是家禽和单胃动物饲料的主要原料,但玉米籽粒中高活性的α-生育酚含量较低,且籽粒中的磷主要是以植酸磷的形式存在,动物不能有效吸收利用,因此,饲料中需要添加化学合成的维生素E和无机磷或微生物来源的植酸酶以满足动物生长发育的需要,增加了饲料成本,同时又容易造成磷污染。通过转基因获得α-生育酚含量和植酸酶活性大量提高的玉米,为饲用玉米育种提供材料基础。【方法】构建含有3个基因表达盒的载体,采用农杆菌侵染的方法转化玉米,草铵膦作为筛选压力;通过喷施草铵膦和PCR鉴定的方法筛选转基因阳性植株,RT-PCR分析目的基因在转录水平的表达情况;Western blot分析目的基因在翻译水平上的表达情况,采用分光光度计测定转基因玉米籽粒中的植酸酶活性,利用HPLC测定籽粒中的维生素E含量,同时比较转基因株系与野生型在其他营养成分和农艺性状上的差异。【结果】构建了胚乳特异性启动子123387驱动的植酸酶基因phyA2表达盒、胚特异性启动子13387驱动的玉米γ-生育酚甲基转移酶基因ZmTMT表达盒以及组成型启动子CaMV 35S驱动的草铵膦抗性基因Bar表达盒串联的植物表达载体;转化玉米获得转基因植株;喷施草铵膦和PCR鉴定得到阳性植株;经过多个世代回交转育,获得目标性状均较好的2个转基因纯合玉米株系TPB1和TPB2;RT-PCR和Western blot分析结果表明phyA2、ZmTMT和Bar在转基因玉米中显著高表达。植酸酶活性测定结果表明,转基因玉米籽粒中植酸酶活性达到10 000—13 000 U·kg-1。维生素E含量测定结果表明,转基因玉米籽粒中90%以上的γ-生育酚转化为α-生育酚,α-生育酚的含量达到50—70 mg·kg-1,α-三烯生育酚的含量也有明显增加。转基因玉米中的植酸酶活性和α-生育酚含量完全能够满足动物饲料的需要。转基因株系的农艺性状与野生型无显著差异,TPB1的营养成分与野生型总体无显著差异,TPB2稍高于野生型但是未产生不利影响;且均具有草铵膦抗性。【结论】获得的富含维生素E和植酸酶、且具有除草剂抗性的玉米新材料可以用于玉米杂交种的开发应用,降低饲料成本,提高磷的利用率,减少环境污染。
姚兴兰,杨文竹,罗彦忠,陈茹梅,王磊,张兰. 转phyA2、ZmTMT和Bar玉米的获得及其特性分析[J]. 中国农业科学, 2020, 53(24): 4982-4991.
YAO XingLan,YANG WenZhu,LUO YanZhong,CHEN RuMei,WANG Lei,ZHANG Lan. Acquisition and Characteristic Analysis of Transgenic Maize with phyA2, ZmTMT, and Bar[J]. Scientia Agricultura Sinica, 2020, 53(24): 4982-4991.
表2
籽粒中其他营养成分分析"
营养成分Nutrient component | WT | TPB1 | TPB2 |
---|---|---|---|
天门冬氨酸 Aspartic acid | 0.55±0.001 | 0.54±0.004 | 0.58±0.005 |
苏氨酸 Threonine | 0.33±0.001 | 0.32±0.001 | 0.36±0.004 |
丝氨酸Serine | 0.41±0.003 | 0.40±0.002 | 0.46±0.003* |
谷氨酸 Glutamic acid | 1.46±0.008 | 1.42±0.006 | 1.72±0.001** |
脯氨酸 Proline | 0.88±0.009 | 0.8±0.007* | 0.97±0.015** |
甘氨酸 Glycine | 0.32±0.005 | 0.31±0.002 | 0.33±0.002 |
丙氨酸 Alanine | 0.59±0.001 | 0.57±0.002 | 0.68±0.005** |
胱氨酸 Cystine | 0.18±0.001 | 0.19±0.003 | 0.21±0.007 |
缬氨酸 Valine | 0.42±0.010 | 0.41±0.002 | 0.47±0.002* |
蛋氨酸 Methionine | 0.31±0001 | 0.44±0.005** | 0.38±0.005* |
异亮氨酸 Isoleucine | 0.28±0.001 | 0.27±0.001 | 0.32±0.001* |
亮氨酸 Leucine | 1.02±0.075 | 0.99±0.004 | 1.22±0.007** |
酪氨酸 Tyrosine | 0.30±0.001 | 0.24±0.008* | 0.25±0.005* |
苯丙氨酸 Phenylalanine | 0.43±0.003 | 0.40±0.010 | 0.47±0.010* |
组氨酸 Histidine | 0.23±0.001 | 0.23±0.007 | 0.26±0.008* |
赖氨酸 Lysine | 0.26±0.001 | 0.26±0.005 | 0.28±0.008 |
精氨酸 Arginine | 0.37±0.002 | 0.36±0.010 | 0.38±0.002 |
色氨酸 Tryptophan | 0.07±0.001 | 0.07±0.001 | 0.07±0.001 |
钙 Calcium | 0.03±0.001 | 0.03±0.001 | 0.03±0.001 |
粗蛋白 Crude protein | 8.47±0.063 | 8.35±0.008 | 9.89±0.050** |
粗脂肪 Crude fat | 3.10±0.015 | 2.50±0.001* | 2.80±0.010 |
干物质 Dry matter | 91.10±1.330 | 91.80±1.410 | 90.80±1.270 |
[1] | ABBASSIAN A. Maize: International Market Profile. In Food and Agriculture Organization of the United Nations, 2006: 1-37. |
[2] | COSGROVE D J. The chemistry and biochemistry of inositol polyphosphates. Review of Pure and Applied Chemistry, 1966,16:209-215. |
[3] |
AUSTIN S, BINGHAM E T, MATHEWS D E, SHAHAN M N, WILL J, BURGESS R R. An overview of a feasibility study for the production of industrial enzymes in transgenic Alfalfa. Annals of the New York Academy of Sciences, 1994,721(1):234-244.
doi: 10.1111/nyas.1994.721.issue-1 |
[4] | RAVINDRAN V, BRYDEN W L. Phytates: Occurrence, bioavailability and implications in poultry nutrition. Avian and Poultry Biology Reviews, 1995,6:125-143. |
[5] |
PEERS F G. The Phytase of Wheat. Biochemical Journal, 1953,53(2):102-110.
doi: 10.1042/bj0530102 |
[6] |
URBANO G, LOPEZ M, ARANDA P, VIDAL C, TENORIO E, PORRES J. The role of phytic acid in legumes: Antinutrient or beneficial function? Journal of Physiology and Biochemistry, 2000,56:283-294.
doi: 10.1007/BF03179796 |
[7] |
KOZI A, KUNISUKE T, KASAI Z. Formation of phytic acid in cereal grains. Annals of the New York Academy of Sciences, 1969,165:801-814.
pmid: 5259621 |
[8] |
LIENER I E. Implications of antinutritional components in soybean foods. Critical Reviews in Food Science and Nutrition, 1994,34(1):31-67.
doi: 10.1080/10408399409527649 pmid: 8142044 |
[9] |
TRABER M. Vitamin E: Beyond antioxidant function. The American Journal of Clinical Nutrition, 1995,62(6 Suppl.):1501S-1509S.
doi: 10.1093/ajcn/62.6.1501S pmid: 7495251 |
[10] |
AFAF K. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 1996,31(7):671-701.
doi: 10.1007/BF02522884 pmid: 8827691 |
[11] | TRABER M. Vitamin E in humans: Demand and delivery. Annual Review of Nutrition, 1996(16):321-347. |
[12] |
CHENG K, NIU Y, ZHENG X C, ZHANG H, CHEN Y P, ZHANG M, HUANG X X, ZHANG L L, ZHOU Y M, WANG T. A comparison of natural (d-alpha-tocopherol) and synthetic (dl-alpha-tocopherol acetate) vitamin e supplementation on the growth performance, meat quality and oxidative status of broilers. Asian-Australasian Journal of Animal Sciences, 2016,29(5):681-688.
doi: 10.5713/ajas.15.0819 pmid: 26954216 |
[13] |
MARUSICH W L, ACKERMAN G, BAUERNFEIND J C. Biological efficacy of D-and DL-α-tocopheryl acetate in chickens. Poultry Science, 1967,46(3):541-548.
doi: 10.3382/ps.0460541 |
[14] |
YAO B, ZHANG C Y, WANG J H, FAN Y. Recombinant Pichia pastoris overexpressing bioactive phytase. Life Sciences, 1998,41:330-336.
doi: 10.1007/BF02895110 pmid: 18425641 |
[15] |
THEO C V, PETER A P, ALBERT J J, JAN W M, ANDRÉ H, PEN J. Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiology, 1995,109:1199-1205.
doi: 10.1104/pp.109.4.1199 pmid: 8539288 |
[16] |
HENRIK B P, LISBETH D S, HOLM P B. Engineering crop plants: Getting a handle on phosphate. Trends in Plant Science, 2002,7(3):118-125.
doi: 10.1016/s1360-1385(01)02222-1 pmid: 11906835 |
[17] |
ALAN E R, PAUL A H, HAYES J E. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. The Plant Journal, 2001,25(6):641-649.
doi: 10.1046/j.1365-313x.2001.00998.x pmid: 11319031 |
[18] |
范云六. 植酸酶的分子生物学与基因工程. 生物工程学报, 2000,16(1):1-5.
pmid: 10883265 |
FAN Y L. Molecular biology and genetic engineering of phytase. Chinese Journal of Biotechnology, 2000,16(1):1-5. (in Chinese)
pmid: 10883265 |
|
[19] |
CHEN R, XUE G, CHEN P, YAO B, YANG W, MA Q, FAN Y, ZHAO Z, TARCZYNSKI M C, SHI J. Transgenic maize plants expressing a fungal phytase gene. Transgenic Research, 2008,17(4):633-643.
doi: 10.1007/s11248-007-9138-3 |
[20] |
CHEN R, ZHANG C, YAO B, XUE G, YANG W, ZHOU X, ZHANG J, SUN C, CHEN P, FAN Y. Corn seeds as bioreactors for the production of phytase in the feed industry. Journal of Biotechnology, 2013,165(2):120-126.
doi: 10.1016/j.jbiotec.2013.01.030 |
[21] | 曹茸. 我国首度批准发放转基因粮食作物安全证书. 农业知识, 2010,6:49-50. |
CAO R. China's first approval to issue safety certificate of genetically modified food crops. Agricultural Knowledge, 2010,6:49-50. (in Chinese) | |
[22] |
SHINTANI D, DELLAPENNA D. Elevating the vitamin E content of plants through metabolic engineering. Science, 1998,282:2098-2100.
doi: 10.1126/science.282.5396.2098 pmid: 9851934 |
[23] |
ZHANG L, LUO Y, ZHU Y, ZHANG L, ZHANG W, CHEN R, XU M, FAN Y, WANG L. GmTMT2a from soybean elevates the alpha- tocopherol content in corn and Arabidopsis. Transgenic Research, 2013,22(5):1021-1028.
doi: 10.1007/s11248-013-9713-8 |
[24] |
CHO E, LEE C, KIM Y S, BAEK S H, REYES B, YUN S. Expression of c-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Latuca sativa L.). Molecules and Cells, 2005,19:16-22.
pmid: 15750335 |
[25] |
TAVVA V S, KIM Y H, KAGAN I A, DINKINS R D, KIM K H, COLLINS G B. Increased alpha-tocopherol content in soybean seed overexpressing the Perilla frutescens gamma-tocopherol methyltransferase gene. Plant Cell Reports, 2007,26(1):61-70.
doi: 10.1007/s00299-006-0218-2 |
[26] | LEE B K, KIM S L, KIM K H, YU S H, LEE S C, ZHANG Z, KIM M S, PARK H M, LEE J Y. Seed specific expression of perilla γ-tocopherol methyltransferase gene increases α-tocopherol content in transgenic perilla (Perilla frutescens). Plant Cell, Tissue and Organ Culture, 2007,92(1):47-54. |
[27] |
ZHANG L, LUO Y, LIU B, ZHANG L, ZHANG W, CHEN R, WANG L. Overexpression of the maize gamma-tocopherol methyltransferase gene (ZmTMT) increases alpha-tocopherol content in transgenic Arabidopsis and maize seeds. Transgenic Research, 2020,29(1):95-104.
doi: 10.1007/s11248-019-00180-z pmid: 31673914 |
[28] |
LIU X, TIAN J, ZHOU X, CHEN R, WANG L, ZHANG C, ZHAO J, FAN Y. Identification and characterization of promoters specifically and strongly expressed in maize embryos. Plant Biotechnology Journal, 2014,12(9):1286-1296.
doi: 10.1111/pbi.12227 |
[29] | ARMSTRONG C L, GREEN C E, PHILLIPS R L. Development and availability of germplasm with High Type-II culture formation response. Maize Genetic Coop News Letter, 1991,65:92-93. |
[30] |
HYUN A K, SETYO D U, SUK Y K, SUNG R M, JIN S K, HAN S Y, CHOI P S. The development of herbicide-resistant maize: Stable Agrobacterium-mediated transformation of maize using explants of type II embryogenic calli. Plant Biotechnology Reports, 2009,3:277-283.
doi: 10.1007/s11816-009-0099-2 |
[31] |
LI Y, LIU X, LI J, LI S, CHEN G, ZHOU X, YANG W, CHEN R. Isolation of a maize ZmCI-1B promoter and characterization of its activity in transgenic maize and tobacco. Plant Cell Reports, 2015,34(8):1443-1457.
doi: 10.1007/s00299-015-1799-4 pmid: 25941157 |
[32] |
MARKUS W, LUIS P, ARNO F, ROLAND R, MICHEL T, ALEXANDRA K, ANKE M, MARTIN L, LINE S, RÖTHLISBERGER U. Biochemical characterization of fungal phytases (myo-Inositol Hexakisphosphate Phosphohydrolases): catalytic properties. Applied and Environmental Microbiology, 1999,65(2):359-366.
doi: 10.1128/AEM.65.2.359-366.1999 pmid: 9925554 |
[33] |
KONDA A R, NAZARENUS T J, NGUYEN H, YANG J, GELLI M, SWENSON S, SHIPP J M, SCHMIDT M A, CAHOON R E, CIFTCI O N. Metabolic engineering of soybean seeds for enhanced vitamin E tocochromanol content and effects on oil antioxidant properties in polyunsaturated fatty acid-rich germplasm. Metabolic Engineering, 2019,57:63-73.
doi: 10.1016/j.ymben.2019.10.005 pmid: 31654815 |
[34] | 王薇薇, 宋歌, 王丽, 周航, 董正林, 刘宽博, 王永伟, 宋丹, 李爱科. 黑龙江粮库库存玉米的营养成分、 脂肪酸值和霉菌毒素含量分析. 粮油食品科技, 2019,27(5):69-74. |
WANG W W, SONG G, WANG L, ZHOU H, DONG Z L, LIU K B, WANG Y W, SONG D, LI A K. Analysis of nutritional content, fatty acid value and mycotoxins content of corn in Heilongjiang Grain Depot. Science and Technology of Cereals Oils and Foods, 2019,27(5):69-74. (in Chinese) | |
[35] | HUMER E, SCHWARZ C, SCHEDLE K. Phytate in pig and poultry nutrition. Journal of Animal Physiology and Animal Nutrition(Berl), 2015,99(4):605-625. |
[36] | GUERRAND D. Chapter 26 - Economics of food and feed enzymes: Status and prospectives. In: Enzymes in Human and Animal Nutrition. Edited by Nunes C S, Kumar V: Academic Press; 2018: 487-514. |
[37] | 杨欢, 汤超华, 张凯. 富维生素E转基因玉米对0~3周龄肉仔鸡生产性能和抗氧化能力的影响. 甘肃农业大学学报, 2016,194(2):28-34. |
YANG H, TANG C H, ZHANG K. Effects of vitamin E-rich transgenic corn on production performance and antioxidant capacity of broilers at 0-3 weeks of age. Journal of Gansu Agricultural University, 2016,194(2):28-34. (in Chinese) | |
[38] | 李海娜, 高仁喜, 田胜军, 刘艳. 天然维生素,生产技术现状. 湿法冶金, 2003,22(3):113-117. |
LI H N, GAO R N, TIAN S J, LIU Y. Natural vitamins, current production technology. Hydrometallurgy of China, 2003,22(3):113-117. (in Chinese) | |
[39] |
CHE P, ZHAO Z Y, GLASSMAN K, DOLDE D, HU T X, JONES T J, GRUIS D F, OBUKOSIA S, WAMBUGU F, ALBERTSEN M C. Elevated vitamin E content improves all-trans β-carotene accumulation and stability in biofortified sorghum. Proceedings of the National Academy of Sciences of the USA, 2016,113(39):11040-11045.
doi: 10.1073/pnas.1605689113 pmid: 27621466 |
[40] |
WANG L, NEWMAN R K, NEWMAN C W, JACKSON L L. Tocotrienol and fatty acid composition of barley oil and their effects on lipid metabolism. Plant Foods for Human Nutrition, 1993,43:9-17.
doi: 10.1007/BF01088091 pmid: 8464850 |
[41] |
PARKER R, PEARCE B, CLARK R W, GORDON D A, WRIGHT J. Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. The Journal of Biological Chemistry, 1993,268:11230-11238.
pmid: 8388388 |
[1] | 柴海燕,贾娇,白雪,孟玲敏,张伟,金嵘,吴宏斌,苏前富. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性[J]. 中国农业科学, 2023, 56(1): 64-78. |
[2] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[3] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[4] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[5] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[6] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[7] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[8] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. |
[9] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[10] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[11] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[12] | 乔远,杨欢,雒金麟,汪思娴,梁蓝月,陈新平,张务帅. 西北地区玉米生产投入及生态环境风险评价[J]. 中国农业科学, 2022, 55(5): 962-976. |
[13] | 黄兆福, 李璐璐, 侯梁宇, 高尚, 明博, 谢瑞芝, 侯鹏, 王克如, 薛军, 李少昆. 不同种植区玉米生理成熟后田间站秆脱水的积温需求[J]. 中国农业科学, 2022, 55(4): 680-691. |
[14] | 石习, 宁丽华, 葛敏, 邬奇, 赵涵. 玉米氮状况相关生物标记物的筛选和应用[J]. 中国农业科学, 2022, 55(3): 438-450. |
[15] | 张建军, 党翼, 赵刚, 王磊, 樊廷录, 李尚中. 覆膜时期和施氮量对陇东旱塬玉米产量和水氮利用效率的影响[J]. 中国农业科学, 2022, 55(3): 479-490. |
|