中国农业科学 ›› 2021, Vol. 54 ›› Issue (6): 1229-1242.doi: 10.3864/j.issn.0578-1752.2021.06.013
宋彪1,2,3(),徐凯悦2,3,王晓华2,3,郭九信2,3,吴良泉2,3,苏达1,3(
)
收稿日期:
2020-06-17
接受日期:
2020-09-24
出版日期:
2021-03-16
发布日期:
2021-03-25
通讯作者:
苏达
作者简介:
宋彪,E-mail:基金资助:
Biao SONG1,2,3(),KaiYue XU2,3,XiaoHua WANG2,3,JiuXin GUO2,3,LiangQuan WU2,3,Da SU1,3(
)
Received:
2020-06-17
Accepted:
2020-09-24
Online:
2021-03-16
Published:
2021-03-25
Contact:
Da SU
摘要:
【目的】明确植酸(PA)、矿质元素含量及其有效性在蜜柚果实中的空间分布特征,为蜜柚矿质营养的生物强化以及果实综合营养评价提供理论参考。【方法】以平和蜜柚产区5个代表性蜜柚品种(白肉蜜柚、黄金蜜柚、红肉蜜柚、三红蜜柚、红棉蜜柚)为供试材料,将成熟期蜜柚果实从外到内细分为黄皮层、白皮层、囊衣和果肉,分别利用铁沉淀法、ICP-MS(Inductively coupled plasma mass spectrometry)、PA与矿质元素的摩尔比,分析蜜柚果实不同空间区位的PA、矿质营养的含量及其有效性;并在此基础上利用三元模型模拟锌在人体肠道内的有效吸收。【结果】蜜柚果实中,磷组分(磷、无机磷)以果肉中含量最高,但PA含量最低。PA含量从外到内总体表现为持续降低的趋势(黄皮层>白皮层>囊衣>果肉)。果肉中植酸磷(PAP)含量仅占总磷的4%,而果皮为30%。此外,果肉中PA表现出显著的基因型差异。不同蜜柚品种果肉中PA含量以红肉蜜柚最高,三红蜜柚和白肉蜜柚最低,最大相差2.6倍。而果肉中磷和无机磷在不同蜜柚品种之间差异不显著。从矿质元素的分布角度看,果皮(黄皮层、白皮层和囊衣)中钙(Ca)的含量较高,果肉中磷的含量较高,而铁(Fe)在果皮不同部位均显著高于果肉,且以在黄皮层和果肉中变异最大。受蜜柚果实不同部位PA和矿质元素含量的共同影响,黄皮层中的[PA]/[Mg]和[PA]/[Fe]最高,白皮层中[PA]/[Zn]和[PA]/[Mn]最高,而果肉中[PA]/[Ca]最高。此外,果肉中矿质元素的有效性也表现出显著的基因型差异。黄金蜜柚的[PA]/[Fe]是红棉蜜柚的将近6倍。红棉蜜柚的[PA]/[Zn]是白肉蜜柚和三红蜜柚的3.6倍。5个供试蜜柚品种中,三红蜜柚和白肉蜜柚属低PA、高矿质元素有效性品种。【结论】蜜柚果实的PA、矿质元素及其有效性在不同蜜柚品种之间,以及果实不同空间部位均存在显著差异。果肉中磷主要以无机磷的形态存在,而非PA。推测果肉的低PA背景对矿质元素的抑制效应相对有限。而果皮中(黄皮层、白皮层)PA含量相对较高,在果皮深加工过程中需注意其矿质元素的有效发挥。
宋彪,徐凯悦,王晓华,郭九信,吴良泉,苏达. 蜜柚果实不同空间部位植酸及矿质营养有效性的分布特征[J]. 中国农业科学, 2021, 54(6): 1229-1242.
Biao SONG,KaiYue XU,XiaoHua WANG,JiuXin GUO,LiangQuan WU,Da SU. Spatial Distribution of Phytic Acid and Minerals’ Availability in Pomelo Fruit[J]. Scientia Agricultura Sinica, 2021, 54(6): 1229-1242.
表1
供试蜜柚品种果实基本外观和品质性状"
品种 Cultivar | 白肉蜜柚 White-fleshed pomelo | 黄金蜜柚 Golden-pomelo | 红肉蜜柚 Red-fleshed pomelo | 三红蜜柚 Three-red pomelo | 红棉蜜柚 Red-albedo pomelo | 平均值 Mean | 变异系数 CV |
---|---|---|---|---|---|---|---|
单果重 Mean fruit weight (g) | 1717.6±97.7a | 2028.7±502.9a | 1624.3±164.1a | 1456.7±243.6a | 1577.6±244.7a | 1681 | 0.19 |
果皮重 Peel weigh (g) | 526.6±2.0a | 469.4±146.8a | 547.8±20.8a | 403.0±61.2ab | 176.9±129.1b | 424.7 | 0.37 |
果实横纵比 Fruit aspect ratio | 0.94±0.04a | 0.91±0.11a | 0.91±0.05a | 0.88±0.01a | 0.92±0.03a | 0.91 | 0.06 |
果肉横纵比 Flesh aspect ratio | 1.00±0.07a | 1.01±0.09a | 1.06±0.11a | 1.01±0.04a | 1.02±0.11a | 1.02 | 0.08 |
果皮厚度 Peel thick (mm) | 15.8±0.8b | 13.3±0.8b | 22.2±1.8a | 16.5±1.8b | 16.3±1.8b | 16.8 | 0.19 |
果形指数 Fruit shape index | 1.08±0.05a | 1.07±0.11a | 1.10±0.06a | 1.13±0.02a | 1.09±0.04a | 1.09 | 0.05 |
果皮含水率 Peel moisture content (%) | 0.80±0.01a | 0.79±0.01a | 0.80±0.01a | 0.79±0.00a | 0.78±0.00a | 0.79 | 0.01 |
果肉含水率 Pulp moisture rate (%) | 0.87±0.00a | 0.87±0.01a | 0.86±0.00a | 0.86±0.00a | 0.86±0.00a | 0.86 | 0.01 |
可食率 Edible rate (%) | 0.69±0.01b | 0.77±0.02ab | 0.66±0.03b | 0.72±0.01b | 0.88±0.10a | 0.75 | 0.12 |
可溶性固形物含量 TSS (%) | 12.6±1.1a | 10.5±0.6b | 11.8±0.7ab | 11.8±0.5ab | 11.7±0.4ab | 11.7 | 0.08 |
可滴定酸 TA (%) | 0.64±0.03a | 0.37±0.00c | 0.54±0.03ab | 0.46±0.04bc | 0.54±0.09ab | 0.51 | 0.19 |
维生素C含量 Vc (mg·kg-1) | 198.2±0.0ab | 215.1±11.7a | 199.9±7.8ab | 194.8±11.7ab | 191.4±5.9b | 199.9 | 0.06 |
固酸比 TSS/TA ratio | 20.4±1.8c | 27.4±1.3a | 22.0±0.6bc | 25.9±2.1ab | 21.9±3.0bc | 23.5 | 0.14 |
表2
5种蜜柚果实中磷组分的空间分布(DW)"
果实部位 Fruit location | 品种 Cultivar | 磷 P (g·kg-1) | 植酸 PA (g·kg-1) | 无机磷 Pi (g·kg-1) | 植酸磷/磷 PAP/P (%) | 无机磷/磷 Pi/P(%) |
---|---|---|---|---|---|---|
黄皮层 Flavedo | 白肉蜜柚 White-fleshed pomelo | 1.37±0.08c | 1.25±0.05c | 0.88±0.06bc | 25.9±2.5c | 64.7±6.8ab |
黄金蜜柚 Golden-pomelo | 1.07±0.02d | 1.39±0.06c | 0.77±0.05c | 36.6±0.9a | 71.3±3.9a | |
红肉蜜柚 Red-fleshed pomelo | 1.72±0.02a | 1.29±0.04c | 1.13±0.05a | 21.1±0.6d | 65.7±2.4ab | |
三红蜜柚 Three-red pomelo | 1.60±0.03ab | 1.75±0.12b | 0.90±0.04bc | 30.9±1.8b | 56.1±2.8b | |
红棉蜜柚 Red-albedo pomelo | 1.54±0.10b | 2.16±0.09a | 0.97±0.05b | 39.4±2.0a | 63.2±4.2ab | |
平均数 Mean | 1.46 | 1.57 | 0.93 | 30.8 | 64.2 | |
变异系数 CV | 0.16 | 0.23 | 0.14 | 0.23 | 0.10 | |
白皮层 Albedo | 白肉蜜柚 White-fleshed pomelo | 0.57±0.01ab | 0.76±0.01a | 0.28±0.02a | 37.7±0.5a | 50.1±3.7a |
黄金蜜柚 Golden-pomelo | 0.51±0.04b | 0.59±0.02b | 0.27±0.03a | 32.6±2.2ab | 52.9±4.0a | |
红肉蜜柚 Red-fleshed pomelo | 0.61±0.00a | 0.57±0.03b | 0.31±0.03a | 26.2±1.5c | 50.4±5.2a | |
三红蜜柚 Three-red pomelo | 0.59±0.01a | 0.61±0.07b | 0.28±0.00a | 29.1±3.2bc | 46.8±1.3a | |
红棉蜜柚 Red-albedo pomelo | 0.63±0.04a | 0.58±0.06b | 0.31±0.01a | 26.1±3.0c | 49.7±4.1a | |
平均数 Mean | 0.58 | 0.62 | 0.29 | 30.3 | 50.0 | |
变异系数 CV | 0.08 | 0.13 | 0.09 | 0.16 | 0.08 | |
囊衣 Segment membrane | 白肉蜜柚 White-fleshed pomelo | 0.76±0.02c | 0.49±0.02ab | 0.38±0.04bc | 18.0±0.45a | 50.0±6.3ab |
黄金蜜柚 Golden-pomelo | 0.75±0.01c | 0.38±0.04bc | 0.31±0.01c | 14.2±1.5ab | 41.1±2.2b | |
红肉蜜柚 Red-fleshed pomelo | 0.89±0.01a | 0.33±0.03c | 0.49±0.02a | 10.4±1.0b | 55.6±2.2a | |
三红蜜柚 Three-red pomelo | 0.82±0.01b | 0.47±0.05ab | 0.45±0.03ab | 16.1±1.9a | 54.6±3.8a | |
红棉蜜柚 Red-albedo pomelo | 0.77±0.04bc | 0.50±0.04a | 0.41±0.04ab | 18.3±2.0a | 53.5±2.2a | |
平均数 Mean | 0.80 | 0.43 | 0.41 | 15.4 | 51.0 | |
变异系数 CV | 0.07 | 0.18 | 0.17 | 0.21 | 0.12 | |
果肉 Juice sac | 白肉蜜柚 White-fleshed pomelo | 1.59±0.07a | 0.14±0.02d | 1.22±0.01a | 2.55±0.31c | 76.8±4.1a |
黄金蜜柚 Golden-pomelo | 1.60±0.01a | 0.29±0.03b | 1.22±0.06a | 5.21±0.50a | 76.5±4.1a | |
红肉蜜柚 Red-fleshed pomelo | 1.70±0.06a | 0.37±0.01a | 1.14±0.07a | 6.09±0.41a | 67.4±6.7a | |
三红蜜柚 Three-red pomelo | 1.59±0.05a | 0.17±0.01d | 1.19±0.03a | 2.98±0.19c | 75.0±3.9a | |
红棉蜜柚 Red-albedo pomelo | 1.58±0.04a | 0.23±0.01c | 1.15±0.02a | 4.12±0.15b | 73.2±3.0a | |
平均数 Mean | 1.61 | 0.24 | 1.19 | 4.18 | 73.8 | |
变异系数 CV | 0.04 | 0.36 | 0.04 | 0.33 | 0.07 |
表3
5种蜜柚果实中矿质元素的空间分布(DW)"
果实部位 Fruit location | 品种 Cultivar | 磷 P (g·kg-1) | 钙 Ca (g·kg-1) | 镁 Mg (g·kg-1) | 铁 Fe (mg·kg-1) | 锌 Zn (mg·kg-1) | 锰 Mn (mg·kg-1) |
---|---|---|---|---|---|---|---|
黄皮层 Flavedo | 白肉蜜柚 White-fleshed pomelo | 1.37±0.08c | 8.08±0.41bc | 1.98±0.12b | 30.0±1.0c | 12.5±1.1bc | 12.5±0.8c |
黄金蜜柚Golden-pomelo | 1.07±0.02d | 7.62±0.72c | 1.95±0.01b | 111.6±3.0a | 10.9±0.1c | 12.8±0.2c | |
红肉蜜柚Red-fleshed pomelo | 1.72±0.02a | 7.70±0.31c | 2.19±0.07ab | 38.2±1.4b | 13.3±0.4ab | 15.6±0.4ab | |
三红蜜柚Three-red pomelo | 1.60±0.03ab | 9.28±0.35ab | 2.17±0.07ab | 34.5±0.6b | 14.7±0.5a | 15.7±0.6a | |
红棉蜜柚Red-albedo pomelo | 1.54±0.10b | 10.4±0.6a | 2.43±0.16a | 25.6±0.3d | 13.8±0.6ab | 14.3±0.4b | |
平均数Mean | 1.46 | 8.61 | 2.14 | 48.0 | 13.0 | 14.2 | |
变异系数CV | 0.16 | 0.14 | 0.09 | 0.69 | 0.11 | 0.10 | |
白皮层 Albedo | 白肉蜜柚White-fleshed pomelo | 0.57±0.01ab | 2.56±0.03bc | 0.86±0.01bc | 77.5±0.3a | 2.01±0.21c | 3.62±0.22b |
黄金蜜柚Golden-pomelo | 0.51±0.04b | 3.03±0.17a | 0.94±0.07a | 70.6±2.9b | 2.84±0.24b | 0.96±0.12c | |
红肉蜜柚Red-fleshed pomelo | 0.61±0.00a | 2.31±0.16c | 0.79±0.04c | 78.1±3.4a | 2.98±0.18b | 4.25±0.21a | |
三红蜜柚Three-red pomelo | 0.59±0.01a | 2.61±0.08bc | 0.84±0.01bc | 23.9±0.4c | 7.80±0.10a | 3.89±0.23ab | |
红棉蜜柚Red-albedo pomelo | 0.63±0.04a | 2.82±0.01ab | 0.93±0.00ab | 81.1±0.6a | 2.84±0.24b | 4.01±0.04ab | |
平均数Mean | 0.58 | 2.66 | 0.87 | 66.3 | 3.69 | 3.34 | |
变异系数CV | 0.08 | 0.10 | 0.08 | 0.34 | 0.58 | 0.38 | |
囊衣 Segment membrane | 白肉蜜柚White-fleshed pomelo | 0.76±0.02c | 3.76±0.09a | 1.12±0.02c | 83.5±3.1a | 2.34±0.27d | 4.40±0.25ab |
黄金蜜柚Golden-pomelo | 0.75±0.01c | 3.69±0.10a | 1.18±0.00ab | 85.5±2.7a | 6.60±0.18b | 4.09±0.39ab | |
红肉蜜柚Red-fleshed pomelo | 0.89±0.01a | 3.45±0.01b | 1.22±0.02a | 70.9±5.4b | 9.39±0.24a | 4.49±0.51ab | |
三红蜜柚Three-red pomelo | 0.82±0.01b | 3.69±0.04a | 1.16±0.02bc | 84.2±2.0a | 4.59±0.21c | 4.99±0.52a | |
红棉蜜柚Red-albedo pomelo | 0.77±0.04bc | 3.75±0.02a | 1.18±0.01b | 88.9±0.6a | 6.51±0.04b | 3.86±0.22b | |
平均数Mean | 0.80 | 3.67 | 1.17 | 82.6 | 5.89 | 4.37 | |
变异系数CV | 0.07 | 0.03 | 0.03 | 0.08 | 0.41 | 0.12 | |
果肉 Juice sac | 白肉蜜柚White-fleshed pomelo | 1.59±0.07a | 0.88±0.14ab | 0.67±0.04ab | 19.8±2.2bc | 8.66±0.13b | 1.97±0.36a |
黄金蜜柚Golden-pomelo | 1.60±0.01a | 1.02±0.00a | 0.71±0.00a | 15.9±0.8c | 9.51±0.26ab | 1.91±0.08a | |
红肉蜜柚Red-fleshed pomelo | 1.70±0.06a | 0.82±0.01b | 0.70±0.02a | 29.3±1.3b | 9.85±0.15a | 2.11±0.23a | |
三红蜜柚Three-red pomelo | 1.59±0.05a | 0.76±0.01b | 0.64±0.02b | 20.4±2.3bc | 9.75±0.62a | 2.13±0.47a | |
红棉蜜柚Red-albedo pomelo | 1.58±0.04a | 0.82±0.03b | 0.70±0.01ab | 76.7±9.4a | 3.90±0.12c | 2.58±0.06a | |
平均数Mean | 1.61 | 0.86 | 0.68 | 32.4 | 8.33 | 2.14 | |
变异系数CV | 0.04 | 0.13 | 0.05 | 0.73 | 0.28 | 0.16 |
表4
5种蜜柚果实中PA与矿质元素摩尔比空间分布(DW)"
部位 Fruitlocation | 品种 Genotype | [PA]/[Ca] | [PA]/[Mg] | [PA]/[Fe] | [PA]/[Zn] | [PA]/[Mn] |
---|---|---|---|---|---|---|
黄皮层 Flavedo | 白肉蜜柚 White-fleshed pomelo | 0.0094±0.0009c | 0.0234±0.0023cd | 3.54±0.25c | 10.0±0.7cd | 8.37±0.88b |
黄金蜜柚 Golden-pomelo | 0.0111±0.0008abc | 0.0263±0.0010bc | 1.06±0.03e | 12.6±0.5b | 9.09±0.27b | |
红肉蜜柚 Red-fleshed pomelo | 0.0102±0.0001bc | 0.0217±0.0003d | 2.85±0.05d | 9.6±0.6d | 6.88±0.07c | |
三红蜜柚 Three-red pomelo | 0.0115±0.0008ab | 0.0297±0.0019ab | 4.30±0.35b | 11.9±0.8bc | 9.27±0.46b | |
红棉蜜柚 Red-albedo pomelo | 0.0126±0.0008a | 0.0328±0.0022a | 7.12±0.38a | 15.5±1.1a | 12.60±0.5a | |
平均数 Mean | 0.0110 | 0.0268 | 3.77 | 11.9 | 9.24 | |
变异系数 CV | 0.1167 | 0.1660 | 0.55 | 0.19 | 0.22 | |
白皮层 Albedo | 白肉蜜柚 White-fleshed pomelo | 0.0179±0.0004a | 0.0323±0.0002a | 0.83±0.01b | 37.4±3.3a | 17.5±1.3b |
黄金蜜柚 Golden-pomelo | 0.0118±0.0004c | 0.0231±0.0016b | 0.71±0.04b | 20.7±2.4b | 51.6±7.6a | |
红肉蜜柚 Red-fleshed pomelo | 0.0150±0.0011b | 0.0266±0.0019b | 0.62±0.03b | 19.0±0.5b | 11.2±0.9b | |
三红蜜柚 Three-red pomelo | 0.0143±0.0015bc | 0.0269±0.0028b | 2.17±0.26a | 7.8±0.8c | 13.2±1.8b | |
红棉蜜柚 Red-albedo pomelo | 0.0126±0.0012bc | 0.0231±0.0023b | 0.61±0.06b | 20.4±2.1b | 12.1±1.1b | |
平均数 Mean | 0.0143 | 0.0264 | 0.98 | 21.1 | 21.1 | |
变异系数 CV | 0.1655 | 0.1464 | 0.63 | 0.47 | 0.77 | |
囊衣 Segment membrane | 白肉蜜柚 White-fleshed pomelo | 0.0079±0.0002ab | 0.0160±0.0005a | 0.50±0.01a | 20.9±3.4a | 9.23±0.20ab |
黄金蜜柚 Golden-pomelo | 0.0062±0.0007bc | 0.0118±0.0012bc | 0.37±0.03b | 5.69±0.70bc | 7.79±1.46bc | |
红肉蜜柚 Red-fleshed pomelo | 0.0057±0.0006c | 0.0099±0.0009c | 0.39±0.04ab | 3.45±0.35c | 6.10±0.78c | |
三红蜜柚 Three-red pomelo | 0.0077±0.0010ab | 0.0149±0.0019ab | 0.47±0.06ab | 10.2±1.6b | 7.83±0.37bc | |
红棉蜜柚 Red-albedo pomelo | 0.0081±0.0007a | 0.0156±0.0014a | 0.48±0.04ab | 7.59±0.68bc | 10.70±0.50a | |
平均数 Mean | 0.0071 | 0.0137 | 0.44 | 9.56 | 8.34 | |
变异系数 CV | 0.1596 | 0.1977 | 0.14 | 0.68 | 0.21 | |
果肉 Juice sac | 白肉蜜柚 White-fleshed pomelo | 0.0102±0.0023d | 0.0079±0.0012d | 0.62±0.12c | 1.65±0.20c | 6.28±1.69b |
黄金蜜柚 Golden-pomelo | 0.0175±0.0017b | 0.0154±0.0015b | 1.57±0.15a | 3.07±0.31b | 12.8±0.7a | |
红肉蜜柚 Red-fleshed pomelo | 0.0273±0.0011a | 0.0192±0.0011a | 1.06±0.06b | 3.69±0.13b | 14.6±2.0a | |
三红蜜柚 Three-red pomelo | 0.0135±0.0011cd | 0.0096±0.0007cd | 0.71±0.14c | 1.72±0.24c | 6.80±1.63b | |
红棉蜜柚 Red-albedo pomelo | 0.0170±0.0003bc | 0.0122±0.0004c | 0.26±0.02d | 5.86±0.35a | 7.42±0.21b | |
平均数 Mean | 0.0171 | 0.0129 | 0.84 | 3.20 | 9.58 | |
变异系数 CV | 0.3547 | 0.3312 | 0.56 | 0.51 | 0.39 |
表5
果实不同部位磷组分、矿质元素及其摩尔比之间的相关性分析"
指标 Index | 果肉 Pulp | 果皮 Peel | 全果实 Whole fruit |
---|---|---|---|
PA×P | 0.547* | 0.825** | 0.225 |
PA×Ca | 0.182 | 0.931** | 0.943** |
PA×Mg | 0.620* | 0.889** | 0.917** |
PA×Fe | 0.043 | -.534** | -0.113 |
PA×Zn | 0.167 | 0.778** | 0.600** |
PA×Mn | -0.045 | 0.892** | 0.912** |
PA×[PA]/[Ca] | 0.950** | 0.263 | -0.101 |
PA×[PA]/[Mg] | 0.997** | 0.671** | 0.752** |
PA×[PA]/[Fe] | 0.575* | 0.903** | 0.870** |
PA×[PA]/[Zn] | 0.452 | 0.016 | 0.290* |
PA×[PA]/[Mn] | 0.934** | -0.112 | -0.005 |
Zn×Fe | -0.930** | -0.596** | -0.589** |
Zn×Mg | -0.145 | 0.901** | 0.678** |
Zn×Ca | 0.121 | 0.883** | 0.618** |
Zn×[PA]/[Zn] | -0.795** | -0.543** | -0.499** |
Zn×[PA]/[Fe] | 0.678** | 0.757** | 0.704** |
Zn×[PA]/[Mg] | 0.192 | 0.212 | 0.131 |
Zn×[PA]/[Ca] | 0.129 | -0.186 | -0.036 |
Fe×Mg | 0.217 | -0.460** | -0.039 |
Fe×Ca | -0.245 | -0.490** | -0.010 |
Fe×[PA]/[Zn] | 0.887** | 0.187 | 0.419** |
Fe×[PA]/[Fe] | -0.672** | -0.787** | -0.518** |
Fe×[PA]/[Mg] | 0.022 | -0.409** | 0.005 |
Fe×[PA]/[Ca] | 0.127 | -0.206 | -0.334** |
Mg×Zn | -0.145 | 0.901** | 0.678** |
Mg×Fe | 0.217 | -0.460** | -0.039 |
Mg×Ca | 0.687** | 0.986** | 0.987** |
Mg×[PA]/[Zn] | 0.502 | -0.294* | 0.089 |
Mg×[PA]/[Fe] | 0.343 | 0.791** | 0.767** |
[PA]/[Mg]×[PA]/[Fe] | 0.581* | 0.587** | 0.596** |
[PA]/[Mg]×[PA]/[Ca] | 0.959** | 0.880** | 0.274* |
[PA]/[Zn]×[PA]/[Fe] | -0.275 | -0.091 | 0.048 |
[1] | 方波, 赵其阳, 席万鹏, 周志钦, 焦必宁. 十种柚类及柚杂种果实中类黄酮含量的超高效液相色谱分析. 中国农业科学, 2013,46(9):1892-1902. |
FANG B, ZHAO Q Y, XI W P, ZHOU Z Q, JIAO B N. Determination of flavonoids in 10 pummelo and pummelo hybrid fruits by ultra performance liquid chromatography. Scientia Agricultura Sinica, 2013,46(9):1892-1902. (in Chinese) | |
[2] | 张世祺, 程琛, 林伟杰, 李歆博, 朱东煌, 陈立松, 郭九信, 李延. ‘琯溪蜜柚’园土壤和树体的硼素营养与果实粒化关系分析. 果树学报, 2019,36(4):468-475. |
ZHANG S Q, CHENG C, LIN W J, LI X B, ZHU D H, CHEN L S, GUO J X, LI Y. Analysis of boron nutrition status in soils and trees and its relationship with fruit granulation in ‘Guanximiyou’ pomelo. Journal of Fruit Science, 2019,36(4):468-475. (in Chinese) | |
[3] | LI Y, HAN M Q, LIN E, TEN Y, LIN J, ZHU D H, GUO P, WENG Y B, CHEN L S. Soil chemical properties, ‘Guanximiyou’ pummelo leaf mineral nutrient status and fruit quality in the southern region of Fujian province, China. Journal of Soil Science and Plant Nutrition, 2015,15(3):615-628. |
[4] | ARUOMA O I, LANDES B, RAMFUL-BABOOLALL D, BOURDON E, NEERGHEEN-BHUJUN V, WAGNER K H, BAHORUN T. Functional benefits of citrus fruits in the management of diabetes. Preventive Medicine, 2012,54(Suppl.):S12-S16. |
[5] | GOULAS V, MANGANARIS G A. Exploring the phytochemical content and the antioxidant potential of Citrus fruits grown in Cyprus. Food Chemistry, 2012,131(1):39-47. |
[6] | 郑洁, 赵其阳, 张耀海, 焦必宁. 超高效液相色谱法同时测定柑橘中主要酚酸和类黄酮物质. 中国农业科学, 2014,47(23):4706-4717. |
ZHENG J, ZHAO Q Y, ZHANG Y H, JIAO B N. Simultaneous determination of main flavonoids and phenolic acids in citrus fruit by ultra performance liquid chromatography. Scientia Agricultura Sinica, 2014,47(23):4706-4717. (in Chinese) | |
[7] | BILBAO M D L M, ANDRES-LACUEVA C, JAUREGUI O, LAMUELA-RAVENTOS R M. Determination of flavonoids in a citrus fruit extract by LC-DAD and LC-MS. Food Chemistry, 2007,101(4):1742-1747. |
[8] | ZHANG M X, DUAN C Q, ZANG Y Y, HUANG Z W, LIU G J. The flavonoid composition of flavedo and juice from the pummelo cultivar (Citrus grandis (L.) Osbeck) and the grapefruit cultivar (Citrus paradisi) from China. Food Chemistry, 2011,129(4):1530-1536. |
[9] |
BARROS H R D M, FERREIRA T A, GENOVESE M I. Antioxidant capacity and mineral content of pulp and peel from commercial cultivars of citrus from Brazil. Food Chemistry, 2012,134(4):1892-1898.
pmid: 23442635 |
[10] |
MATSUO Y, MIURA L A, ARAKI T, YOSHIE-STARK Y. Proximate composition and profiles of free amino acids, fatty acids, minerals and aroma compounds in Citrus natsudaidai peel. Food Chemistry, 2019,279:356-363.
doi: 10.1016/j.foodchem.2018.11.146 pmid: 30611501 |
[11] | AGÓCS A, NAGY V, SZABÓ Z, MÁRK L, OHMACHT R, DELI J. Comparative study on the carotenoid composition of the peel and the pulp of different citrus species. Innovative Food Science & Emerging Technologies, 2007,8(3):390-394. |
[12] | TANG N, DENG W, HU N, CHEN N, LI Z G. Metabolite and transcriptomic analysis reveals metabolic and regulatory features associated with Powell orange pulp deterioration during room temperature and cold storage. Postharvest Biology and Technology, 2016,112:75-86. |
[13] | FU X Z, XIE F, CAO L, LING L L, CHUN C P, PENG L Z. Changes in mineral nutrition during fruit growth and development of ‘Seike’ and ‘Newhall’ navel orange as a guide for fertilization. Revista Brasilra de Fruticultura, 2019,41(5): e-111. |
[14] |
CZECH A, ZARYCKA E, YANOVYCH D, ZASADNA Z, GRZEGORCZYK I, KLYS S. Mineral content of the pulp and peel of various citrus fruit cultivars. Biological Trace Element Research, 2020,193(2):555-563.
doi: 10.1007/s12011-019-01727-1 pmid: 31030384 |
[15] |
SHI J R, WANG H Y, SCHELLIN K, LI B L, FALLER M, STOOP J M, MEELEY R B, ERTL D S, RANCH J P, GLASSMAN K. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nature Biotechnology, 2007,25(8):930-937.
doi: 10.1038/nbt1322 pmid: 17676037 |
[16] |
IWAI T, TAKAHASHI M, ODA K, TERADA Y, YOSHIDA K T. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development. Plant Physiology, 2012,160(4):2007-2014.
pmid: 23090587 |
[17] |
MAGALLANES-LOPEZ A M, HERNANDEZ-ESPINOSA N, VELU G, POSADAS-ROMANO G, ORDOÑEZ-VILLEGAS V M G, CROSSA J, AMMAR K, GUZMÁN C. Variability in iron, zinc and phytic acid content in a worldwide collection of commercial durum wheat cultivars and the effect of reduced irrigation on these traits. Food Chemistry, 2017,237:499-505.
doi: 10.1016/j.foodchem.2017.05.110 pmid: 28764025 |
[18] |
WEI Y Y, SHOHAG M J I, YANG X E, ZHANG Y B. Effects of foliar iron application on iron concentration in polished rice grain and its bioavailability. Journal of Agricultural and Food Chemistry, 2012,60(45):11433-11439.
pmid: 23083412 |
[19] |
SU D, ZHOU L J, ZHAO Q, PAN G, CHENG F M. Different phosphorus supplies altered the accumulations and quantitative distributions of phytic acid, zinc, and iron in rice (Oryza sativa L.) grains. Journal of Agricultural and Food Chemistry, 2018,66(7):1601-1611.
pmid: 29401375 |
[20] |
LIANG J F, HAN B Z, ROBERT NOUT M J, HAMER R J. Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chemistry, 2008,110(4):821-828.
doi: 10.1016/j.foodchem.2008.02.064 pmid: 26047266 |
[21] |
MILLER L V, KREBS N F, HAMBIDGE K M. A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. The Journal of Nutrition, 2007,137(1):135-141.
doi: 10.1093/jn/137.1.135 pmid: 17182814 |
[22] |
PATIL B S, JAYAPRAKASHA G K, CHIDAMBARA MUETHY K N, VIKRAM A. Bioactive compounds: historical perspectives, opportunities, and challenges. Journal of Agricultural and Food Chemistry, 2009,57(18):8142-8160.
doi: 10.1021/jf9000132 pmid: 19719126 |
[23] | TOPUZ A, TOPAKCI M, CANAKCI M, AKINCI I, OZDEMIR F. Physical and nutritional properties of four orange varieties. Journal of Food Engineering, 2005,66(4):519-523. |
[24] | RABOY V, YOUNG K A, DORSCH J A, COOK A. Genetics and breeding of seed phosphorus and phytic acid. Journal of Plant Physiology, 2001,158(4):489-497. |
[25] | LOTT J N A, OCKENDEN I, RABOY V, BATTEN G D. Phytic acid and phosphorus in crop seeds and fruits: A global estimate. Seed Science Research, 2000,10(1):11-33. |
[26] |
PERERA I, SENEWEERA S, HIROTSU N. Manipulating the phytic acid content of rice grain toward improving micronutrient bioavailability. Rice, 2018,11(1):4.
pmid: 29327163 |
[27] |
GUPTA R K, GANGOLIYA S S, SINGH N K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science and Technology, 2015,52(2):676-684.
doi: 10.1007/s13197-013-0978-y pmid: 25694676 |
[28] | MALIK I O, E BABIKER E, E YOUSIF N, TINAY A H E. In vitro availability of minerals of some tropical and citrus fruits as influenced by antinutritional factors. Molecular Nutrition & Food Research, 2004,48(1):65-68. |
[29] |
GREEN C O, WHEATLEY A O, BAILEY D, SOTELO A, ASEMOTA H. Nutritional composition of Jamaican citrus agro by-product with potential for nutraceutical product development. Research, 2014. doi: 10.13070/rs.en.1.771.
doi: 10.34133/2021/3565791 pmid: 33629070 |
[30] | OLUREMI O I A, NGI J, ANDREW I A. Phytonutrients in citrus fruit peel meal and nutritional implication for livestock production. Livestock Research for Rural Development, 2007,19(7):1-5. |
[31] | 陈欢欢, 王玉雯, 张利军, 罗丽娟, 叶欣, 李延, 陈立松, 郭九信. 我国柑橘镁营养现状及其生理分子研究进展. 果树学报, 2019,36(11):1578-1590. |
CHEN H H, WANG Y W, ZHANG L J, LUO L J, YE X, LI Y, CHEN L S, GUO J X. Advances in magnesium nutritional status and its mechanisms of physiological and molecule in citrus. Journal of Fruit Science, 2019,36(11):1578-1590. (in Chinese) | |
[32] |
SHARMA K, MAHATO N, CHO M H, LEE Y R. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition, 2017,34:29-46.
doi: 10.1016/j.nut.2016.09.006 pmid: 28063510 |
[33] | FRATIANNI F, COZZOLINO A, DE FEO V, COPPOLA R, OMBRA M N, NAZZARO F. Polyphenols, antioxidant, antibacterial, and biofilm inhibitory activities of peel and pulp of Citrus medica L., Citrus bergamia, and Citrus medica cv. Salò cultivated in Southern Italy. Molecules, 2019,24(24):4577. |
[34] | BOUDRIES H, SOUAGUI S, NABET N, YDJEDD S, KEFALAS P, MADANI K, CHIBANE M. Valorisation of clementine peels for the recovery of minerals and antioxidants: Evaluation and characterisation by LC-DAD-MS of solvent extracts. International Food Research Journal, 2015,22(3):1218-1226. |
[35] |
ÖZCAN M M, HARMANKAYA M, GEZGIN S. Mineral and heavy metal contents of the outer and inner tissues of commonly used fruits. Environmental Monitoring and Assessment, 2012,184(1):313-320.
pmid: 21409363 |
[36] | GORINSTEIN S, MARTIN-BELLOSO O, PARK Y, HARUENKIT R, LOJEK A, CIZ M, CASPI A, LIBMAN I, TRAKHTENBERG S. Comparison of some biochemical characteristics of different citrus fruits. Food Chemistry, 2001,74(3):309-315. |
[37] | LADO J, GAMBETTA G, ZACARIAS L. Key determinants of citrus fruit quality: Metabolites and main changes during maturation. Scientia Horticulturae, 2018,233:238-248. |
[38] |
DING Y D, CHANG J W, MA Q L, CHEN L L, LIU S Z, JIN S, HAN J W, XU R W, ZHU A D, GUO J, LUO Y, XU J, XU Q, ZENG Y L, DENG X X, CHENG Y J. Network analysis of postharvest senescence process in citrus fruits revealed by transcriptomic and metabolomic profiling. Plant Physiology, 2015,168(1):357-376.
pmid: 25802366 |
[39] |
SEYMOUR G B, ØSTERGAARD L, CHAPMAN N H, KNAPP S, MARTIN C. Fruit development and ripening. Annual Review of Plant Biology, 2013,64:219-241.
pmid: 23394500 |
[40] | TADEO F R, CERCÓS M, COLMENERO‐FLORES J M, IGLESIAS D J, NARANJO M A, RÍOS G, CARRERA E, RUIZ-RIVERO O, LLISO G, MORILLON R, OLLITRAULT P, TALON M. Molecular physiology of development and quality of citrus. Advances in Botanical Research, 2008,47:147-223. |
[41] | GHASEMI S, KHOSHGOFTARMANESH A H, AFYUNI M, HADADZADEH H. The effectiveness of foliar applications of synthesized zinc-amino acid chelates in comparison with zinc sulfate to increase yield and grain nutritional quality of wheat. European Journal of Agronomy, 2013,45:68-74. |
[42] | ROOS N, SØRENSEN J C, SØRENSEN H, RASMUSSEN S K, BRIEND A, YANG Z Y, HUFFMAN S L. Screening for anti-nutritional compounds in complementary foods and food aid products for infants and young children. Maternal and Child Nutrition, 2013,9(Suppl. 1):47-71. |
[43] | JOHNSON C R, THAVARAJAH D, THAVARAJAH P. The influence of phenolic and phytic acid food matrix factors on iron bioavailability potential in 10 commercial lentil genotypes (Lens culinaris L.). Journal of Food Composition and Analysis, 2013,31(1):82-86. |
[1] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[2] | 冯向前,殷敏,王孟佳,马横宇,褚光,刘元辉,徐春梅,章秀福,张运波,王丹英,陈松. 南方稻区“早籼晚粳”栽培模式晚季灌浆期气象因子对晚粳稻品质的影响[J]. 中国农业科学, 2023, 56(1): 46-63. |
[3] | 朱大伟,章林平,陈铭学,方长云,于永红,郑小龙,邵雅芳. 中国优质稻品种品质及食味感官评分值的特征[J]. 中国农业科学, 2022, 55(7): 1271-1283. |
[4] | 吕馨宁,王玥,贾润普,王胜男,姚玉新. 不同温度下褪黑素处理对‘阳光玫瑰'葡萄采后品质的影响[J]. 中国农业科学, 2022, 55(7): 1411-1422. |
[5] | 彭雪,高月霞,张琳煊,高志强,任亚梅. 高能电子束辐照对马铃薯贮藏品质及芽眼细胞超微结构的影响[J]. 中国农业科学, 2022, 55(7): 1423-1432. |
[6] | 宗成, 吴金鑫, 朱九刚, 董志浩, 李君风, 邵涛, 刘秦华. 添加剂对农副产物和小麦秸秆混合青贮发酵品质的影响[J]. 中国农业科学, 2022, 55(5): 1037-1046. |
[7] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[8] | 蒋晶晶,周天阳,韦陈华,邬佳宁,张耗,刘立军,王志琴,顾骏飞,杨建昌. 不同栽培措施对超级稻强、弱势粒品质的影响[J]. 中国农业科学, 2022, 55(5): 874-889. |
[9] | 卞能飞, 孙东雷, 巩佳莉, 王幸, 邢兴华, 金夏红, 王晓军. 花生烘烤食用品质评价及指标筛选[J]. 中国农业科学, 2022, 55(4): 641-652. |
[10] | 向妙莲, 吴帆, 李树成, 王印宝, 肖刘华, 彭文文, 陈金印, 陈明. 褪黑素处理对梨果实采后黑斑病及贮藏品质的影响[J]. 中国农业科学, 2022, 55(4): 785-795. |
[11] | 宋江涛,谌丹丹,公旭晨,商祥明,李春龙,蔡永喜,岳建平,王帅玲,张卜芬,谢宗周,刘继红. 人工疏果对‘爱媛28’橘橙果实糖酸含量及代谢基因表达的影响[J]. 中国农业科学, 2022, 55(23): 4688-4701. |
[12] | 贾晓辉,张鑫楠,刘佰霖,马风丽,杜艳民,王文辉. 低O2/高CO2气调结合1-MCP对‘玉露香’梨贮藏品质的影响[J]. 中国农业科学, 2022, 55(23): 4717-4727. |
[13] | 余维宝,李楠,寇一泓,曹新有,司纪升,韩守威,李豪圣,张宾,王法宏,张海林,赵鑫,李华伟. 山东省强筋小麦品质评价及与气象因子关系分析[J]. 中国农业科学, 2022, 55(22): 4383-4397. |
[14] | 刘浩,庞婕,李欢欢,强小嫚,张莹莹,宋嘉雯. 叶面喷施硒与土壤水分耦合对番茄产量和品质的影响[J]. 中国农业科学, 2022, 55(22): 4433-4444. |
[15] | 韩冬梅,黄石连,欧阳思颖,张乐,卓侃,吴振先,李建光,郭栋梁,王静. 提升龙眼果实耐贮性的果期病害防治与养分优化管理[J]. 中国农业科学, 2022, 55(21): 4279-4293. |
|