中国农业科学 ›› 2019, Vol. 52 ›› Issue (14): 2391-2405.doi: 10.3864/j.issn.0578-1752.2019.14.002
张小琼1,郭剑2,代书桃3,任元4,李凤艳5,刘京宝3,李永祥2,张登峰2,石云素2,宋燕春2,黎裕2,王天宇2,邹华文1(),李春辉2(
)
收稿日期:
2019-03-20
接受日期:
2019-04-25
出版日期:
2019-07-16
发布日期:
2019-07-26
通讯作者:
邹华文,李春辉
作者简介:
张小琼,E-mail: qiong2017@foxmail.com。
基金资助:
ZHANG XiaoQiong1,GUO Jian2,DAI ShuTao3,REN Yuan4,LI FengYan5,LIU JingBao3,LI YongXiang2,ZHANG DengFeng2,SHI YunSu2,SONG YanChun2,LI Yu2,WANG TianYu2,ZOU HuaWen1(),LI ChunHui2(
)
Received:
2019-03-20
Accepted:
2019-04-25
Online:
2019-07-16
Published:
2019-07-26
Contact:
HuaWen ZOU,ChunHui LI
摘要:
【目的】根系作为植株吸收水分和养分的重要器官,对玉米生长及产量的形成至关重要。研究玉米根系结构的遗传机制指导玉米高产育种实践。【方法】以111份玉米优异自交系为材料,于2017年在北京、陕西永寿、山西定襄和河南原阳4个环境下对玉米地下节根层数(RLN)、地下节根总条数(TRN)、地下节根角度(RA)、地下节根面积(RS)、地下节根体积(RV)和地下节根干重(RDW)等6个玉米根系相关性状进行调查。取4个环境的平均值作为6个根系相关性状的表型数据,对6个相关性状进行统计分析和相关性分析,对不同年代、不同类群自交系的地下节根相关性状进行差异分析。基于该群体全基因组152 352个高质量SNP标记,利用FarmCPU模型进行全基因组关联分析获得显著关联SNP位点,并在LD衰减距离范围内查找候选基因,对候选基因的功能进行富集分析。【结果】表型分析表明,6个地下节根性状均呈现正态分布,且均显示出较高的遗传力;相关性分析结果表明,地下节根层数和总条数均与地下节根角度和面积呈负相关,地下节根的角度、面积、体积和干重等4个性状之间相互呈现显著正相关关系;不同年代的玉米地下根系结构存在差异,地下节根层数和总条数在年代的更替间表现出下降的趋势,地下节根角度和面积在年代更替间表现出上升的趋势,根干重和根体积在各年代间无显著差异;玉米地下根系结构在类群间也存在差异,旅大红骨类群的6个地下节根性状值均高于其余类群。全基因组关联分析共检测到26个SNP位点与地下节根层数、总条数、体积和干重性状显著关联(P<0.00001),其中11个显著关联位点定位于前人报道的根系QTL区间内,2个显著关联SNP在地下节根层数和总条数中均被检测到。基于显著关联SNP位点共挖掘到177个候选基因,其中135个具有功能注释,Zm00001d037368可能为控制地下节根层数和总条数的一因多效候选基因。候选基因功能的富集分析结果显示,候选基因的功能主要涉及植物体内的代谢调节、应激反应、运输活性、催化活性、结合蛋白及细胞成分等。【结论】玉米自交系的根系结构在不同年代间和不同类群间存在不同程度的差异,采用全基因组关联分析策略挖掘控制玉米根系结构的相关遗传位点及候选基因,共检测到26个显著关联的SNP位点。
张小琼,郭剑,代书桃,任元,李凤艳,刘京宝,李永祥,张登峰,石云素,宋燕春,黎裕,王天宇,邹华文,李春辉. 玉米花期根系结构的表型变异与全基因组关联分析[J]. 中国农业科学, 2019, 52(14): 2391-2405.
ZHANG XiaoQiong,GUO Jian,DAI ShuTao,REN Yuan,LI FengYan,LIU JingBao,LI YongXiang,ZHANG DengFeng,SHI YunSu,SONG YanChun,LI Yu,WANG TianYu,ZOU HuaWen,LI ChunHui. Phenotypic Variation and Genome-wide Association Analysis of Root Architecture at Maize Flowering Stage[J]. Scientia Agricultura Sinica, 2019, 52(14): 2391-2405.
表1
地下节根相关性状统计分析"
性状 Trait | 均值 Mean | 最大值 Max | 最小值 Min | 标准差 SD | 变异系数 CV (%) | 广义遗传力 H2 |
---|---|---|---|---|---|---|
地下节根层数RLN | 6.67 | 8.67 | 5.38 | 0.62 | 9.29 | 0.67 |
地下节根总条数TRN | 59.41 | 88.00 | 42.00 | 8.96 | 15.08 | 0.74 |
地下节根角度RA | 58.67 | 80.70 | 35.82 | 8.51 | 14.50 | 0.80 |
地下节根面积RS | 76.28 | 111.91 | 45.55 | 13.85 | 18.15 | 0.79 |
地下节根体积RV | 68.75 | 144.17 | 19.63 | 24.84 | 36.13 | 0.75 |
地下节根干重RDW | 13.77 | 32.60 | 4.09 | 5.11 | 37.12 | 0.82 |
表2
不同年代玉米自交系"
年代 Era | 材料数量 Number of materials | 材料名称 Name of materials |
---|---|---|
1970s | 10 | C103、E28、H21、Mo17、丹黄02 Danhuang02、黄早四Huangzaosi、威风322 Weifeng322、掖8112 Ye8112、原武02 Yuanwu02、吉63 Ji63 |
1980s | 17 | 853、5003、81162、4F1、B73、K12、Mo17Ht、X178、丹340 Dan340、合344 He344、齐319 Qi319、天涯4 Tianya4、铁7922 Tie7922、掖478 Ye478、掖488 Ye488、掖52106 Ye52106、郑58 Zheng58 |
1990s | 14 | 444、5237、A801、C8605-2、Ki3、KL4、P138、昌7-2 Chang7-2、丹598 Dan598、多229 Duo229、黄野四3 Huangyesi3、获唐黄17 Huotanghuang17、沈137 Shen137、郑22 Zheng22 |
2000s | 5 | 沈3336 Shen3336、四-144 Si-144、PH6JM、京724 Jing724、京725 Jing725 |
表3
不同类群地下节根相关性状的统计分析"
性状/类群 Trait/Group | 均值 Mean | 标准差 SD | 极小值 Min | 极大值 Max | 变异系数 CV (%) |
---|---|---|---|---|---|
RLN | |||||
瑞德Reid | 6.47ab | 0.64 | 5.38 | 8.22 | 9.94 |
旅大红骨LRC | 6.86a | 0.56 | 6.17 | 8.00 | 8.13 |
兰卡斯特Lancaster | 6.44b | 0.43 | 5.56 | 7.33 | 6.73 |
塘四平头TSPT | 7.02a | 0.64 | 6.17 | 8.17 | 9.12 |
P群P group | 6.54ab | 0.52 | 5.83 | 7.21 | 7.92 |
混合群Mixed group | 7.08a | 0.55 | 6.33 | 8.67 | 7.76 |
TRN | |||||
瑞德Reid | 56.86b | 7.33 | 43.13 | 75.83 | 12.90 |
旅大红骨LRC | 63.72a | 10.53 | 49.39 | 77.33 | 16.52 |
兰卡斯特Lancaster | 55.83b | 6.51 | 42.00 | 68.67 | 11.66 |
塘四平头TSPT | 63.79a | 10.47 | 48.11 | 86.67 | 16.41 |
P群P group | 60.40ab | 9.26 | 47.92 | 74.80 | 15.33 |
混合群Mixed group | 63.35a | 9.77 | 51.67 | 88.00 | 15.42 |
RA | |||||
瑞德Reid | 61.32a | 7.13 | 48.65 | 80.70 | 11.62 |
旅大红骨LRC | 62.66a | 4.81 | 53.71 | 67.65 | 7.67 |
兰卡斯特Lancaster | 58.43ab | 9.82 | 43.89 | 78.03 | 16.81 |
塘四平头TSPT | 54.82b | 6.94 | 44.87 | 66.00 | 12.66 |
P群P group | 57.52ab | 8.23 | 43.71 | 67.99 | 14.31 |
混合群Mixed group | 55.76ab | 9.94 | 35.82 | 71.87 | 17.82 |
RS | |||||
瑞德Reid | 82.07a | 11.62 | 60.58 | 109.61 | 14.16 |
旅大红骨LRC | 82.68a | 12.71 | 68.47 | 106.65 | 15.37 |
兰卡斯特Lancaster | 74.90a | 14.99 | 48.38 | 111.91 | 20.02 |
塘四平头TSPT | 65.50b | 10.22 | 51.80 | 88.01 | 15.60 |
P群P group | 73.68ab | 13.88 | 57.50 | 97.73 | 18.84 |
混合群Mixed group | 74.34a | 13.85 | 45.55 | 107.94 | 18.63 |
RV | |||||
瑞德Reid | 69.72ab | 23.36 | 34.21 | 140.83 | 33.51 |
旅大红骨LRC | 81.82a | 33.68 | 38.31 | 144.17 | 41.17 |
兰卡斯特Lancaster | 66.95ab | 23.85 | 19.63 | 124.52 | 35.63 |
塘四平头TSPT | 71.59ab | 29.86 | 33.33 | 139.17 | 41.71 |
P群P group | 68.97ab | 24.45 | 44.37 | 107.99 | 35.45 |
混合群Mixed group | 60.62b | 19.36 | 38.33 | 123.11 | 31.93 |
RDW | |||||
瑞德Reid | 14.25a | 4.34 | 6.49 | 24.86 | 30.44 |
旅大红骨LRC | 16.21a | 7.84 | 7.55 | 32.60 | 48.38 |
兰卡斯特Lancaster | 13.07a | 4.92 | 4.09 | 28.32 | 37.68 |
塘四平头TSPT | 12.26a | 4.99 | 5.21 | 25.07 | 40.66 |
P群P group | 14.22a | 4.60 | 8.99 | 23.49 | 32.35 |
混合群Mixed group | 13.74a | 5.55 | 5.86 | 31.29 | 40.41 |
表4
影响玉米地下节根相关性状的SNP及最可能的候选基因及其功能注释"
性状 Trait | SNP | Chr. | 位置a Position (bp) | P值 P value | 候选基因b Candidate gene | 基因功能注释 Gene annotation | 参考文献c Reference |
---|---|---|---|---|---|---|---|
RLN | Chr.1.S_31312069 | 1 | 31312069 | 3.07E-06 | Zm00001d028337 | 富含脯氨酸的受体样蛋白激酶PERK4 Proline-rich receptor-like protein kinase PERK4 | |
RLN | Chr.1.S_31312087 | 1 | 31312087 | 3.07E-06 | Zm00001d028344 | 推定的金属耐受蛋白C3 Putative metal tolerance protein C3 | |
RDW | Chr.3.S_103120493 | 3 | 103120493 | 1.07E-05 | Zm00001d041183 | 蛋白激酶超家族蛋白质/苏氨酸蛋白激酶prpf4B-liken Protein kinase superfamily proteiserine/threonine-protein kinase prpf4B-liken | |
RV | Chr.3.S_104251070 | 3 | 104251070 | 8.33E-06 | Zm00001d041192 | 蔗糖转运蛋白4 Sucrose transporter4 | |
RDW | Chr.4.S_9975093 | 4 | 9975093 | 7.24E-06 | Zm00001d048943 | 硫氧还蛋白超家族蛋白 Thioredoxin superfamily protein | [14] |
RV | Chr.4.S_38214896 | 4 | 38214896 | 3.38E-06 | Zm00001d049623 | SNARE相关蛋白 SNARE-associated protein-related | |
Zm00001d049627 | 蛋氨酸氨肽酶 Methionine aminopeptidase | ||||||
RV | Chr.4.S_63797065 | 4 | 63797065 | 7.79E-06 | Zm00001d050069 | 海藻糖-6-磷酸合成酶8 Trehalose-6-phosphate synthase8 | |
RV | Chr.4.S_100804613 | 4 | 100804613 | 8.30E-06 | Zm00001d050558 | OSJNBa0043A12.20蛋白 OSJNBa0043A12.20 protein | |
TRN | Chr.4.S_246664102 | 4 | 246664102 | 3.96E-06 | Zm00001d054104 | E3泛素蛋白连接酶UPL3 E3 ubiquitin-protein ligase UPL3 | |
Zm00001d054105 | 尿苷激酶样蛋白3 Uridine kinase-like protein 3 | ||||||
RDW | Chr.6.S_34950886 | 6 | 34950886 | 9.19E-06 | Zm00001d035587 | G型凝集素S受体样丝氨酸/苏氨酸蛋白激酶At2g19130 G-type lectin S-receptor-like serine/threonine-protein kinase At2g19130 | [5,20] |
Zm00001d035588 | G型凝集素S受体样丝氨酸/苏氨酸蛋白激酶At2g19130 G-type lectin S-receptor-like serine/threonine-protein kinase At2g19130 | ||||||
RDW | Chr.6.S_108781517 | 6 | 108781517 | 6.09E-07 | Zm00001d037004 | Ras相关蛋白RABA1d Ras-related protein RABA1d | [17] |
Zm00001d037010 | 毛发相关蛋白激酶iota Shaggy-related protein kinase iota | ||||||
RLN/TRN | Chr.6.S_123079904 | 6 | 123079904 | 4.00E-06 | Zm00001d037360 | 推定的bZIP转录因子超家族蛋白 Putative bZIP transcription factor superfamily protein | [20] |
RLN/TRN | Chr.6.S_123079927 | 6 | 123079927 | 4.00E-06 | Zm00001d037368 | 未知 Unknown | [20] |
RLN | Chr.6.S_123845438 | 6 | 123845438 | 2.51E-06 | Zm00001d037384 | 花青素3-O-葡糖基转移酶 Anthocyanidin 3-O-glucosyltransferase | [20] |
TRN | Chr.6.S_135051799 | 6 | 135051799 | 6.13E-06 | Zm00001d037712 | MAR结合丝状蛋白1 MAR-binding filament-like protein 1 | |
RV | Chr.6.S_136591446 | 6 | 136591446 | 6.19E-06 | Zm00001d037751 | 晚期胚胎发育丰富(LEA)富含羟脯氨酸的糖蛋白家族 Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein family | |
RDW | Chr.7.S_48142656 | 7 | 48142656 | 3.42E-06 | Zm00001d019648 | 核酸结合蛋白1 Nucleic acid binding protein 1 | [14] |
RDW | Chr.7.S_101804639 | 7 | 101804639 | 7.71E-07 | Zm00001d020242 | 锌指CCCH结构域的蛋白质64 Zinc finger CCCH domain-containing protein 64 | [14] |
RLN | Chr.8.S_55681954 | 8 | 55681954 | 5.47E-06 | Zm00001d009324 | AMSH样泛素蛋白硫酯酶3 AMSH-like ubiquitin thioesterase 3 | |
RV | Chr.8.S_100196991 | 8 | 100196991 | 1.68E-06 | Zm00001d010119 | 冷休克蛋白CS66 Cold shock protein CS66 | [20] |
RV | Chr.8.S_100680141 | 8 | 100680141 | 1.07E-07 | Zm00001d010128 | 酸性核糖体蛋白P2b(rpp2b) Acidic ribosomal protein P2b (rpp2b) | [20] |
RV | Chr.9.S_67485696 | 9 | 67485696 | 3.82E-07 | Zm00001d046152 | 推定的RING-H2指蛋白ATL71 Putative RING-H2 finger protein ATL71 | |
RV | Chr.9.S_111860806 | 9 | 111860806 | 9.44E-06 | Zm00001d046942 | 果糖-1,6-二磷酸酶 Fructose-1,6-bisphosphatase | |
RV | Chr.10.S_150110617 | 10 | 150110617 | 1.08E-05 | Zm00001d026687 | 生长素响应因子17 Auxin response factor 17 | [14] |
Zm00001d026694 | 生长素响应因子13 Auxin response factor 13 |
[1] |
LYNCH J P . Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 2013,112(2):347-357.
doi: 10.1093/aob/mcs293 |
[2] |
VILLORDON A Q, GINZBERG I, FIRON N . Root architecture and root and tuber crop productivity. Trends in Plant Science, 2014,19(7):419-425.
doi: 10.1016/j.tplants.2014.02.002 |
[3] | NING P, Li S, WHITE P J, LI C J . Maize varieties released in different eras have similar root length density distributions in the soil, which are negatively correlated with local concentrations of soil mineral nitrogen. PLoS ONE, 2014,10(3):e0121892. |
[4] |
HAMMER G L, DONG Z S, MCLEAN G, DOHERTY A, MESSINA C, SCHUSSLER J, ZINSELMEIER C, PASZKIEWICZ S, COOPER M . Can changes in canopy and/or root system architecture explain historical maize yield trends in the U. S. Corn belt? Crop Science, 2009,49(1):299-312.
doi: 10.2135/cropsci2008.03.0152 |
[5] | CAI H G, CHEN F J, MI G H, ZHANG F S, MAURER H P, LIU W X, REIF J C, YUAN L X . Mapping QTLs for root system architecture of maize (Zea mays L.) in the field at different developmental stages. Theoretical and Applied Genetics, 2012,125(6):1313-1324. |
[6] | 程帅, 李鹏程, 刘志刚, 赵龙飞, 米国华 . 密度、氮肥对玉米杂交种节根数量的影响. 植物营养与肥料学报, 2016,22(4):1118-1125. |
CHENG S, LI P C, LIU Z G, ZHAO L F, MI G H . Effect of plant density and nitrogen supply on nodal root number of maize of different varieties. Journal of Plant Nutrition and Fertilizer, 2016,22(4):1118-1125. (in Chinese) | |
[7] |
ALI M L, LUETCHENS J, NASCIMENTO J, SHAVER T M, KRUGER G R, LORENZ A J . Genetic variation in seminal and nodal root angle and their association with grain yield of maize under water-stressed field conditions. Plant Soil, 2015,397(1/2):213-225.
doi: 10.1007/s11104-015-2554-x |
[8] | UGA Y, SUGIMOTO K, OGAWA S, RANE J, ISHITANI M, HARA N, KITOMI Y, INUKAI Y, ONO K, KANNO N, INOUE H, TAKEHISA H, MOTOYAMA R, NAGAMURA Y, WU J Z, MATSUMOTO T, TAKAI T, OKUNO K, YANO M . Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 2013,45(9):1097-1102. |
[9] | COMAS L H, BECKER S R, CRUZ V M V, BYRNE P F, DIERIG D A . Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 2013,4(2):442. |
[10] | GAO Y Z, LYNCH J P . Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.). Journal of Experimental Botany, 2016,67(15):4545-4557. |
[11] | BURTON A L, JOHNSON J M, FOERSTER J M, HIRSCH C N, BUELL C R, HANLON M T, KAEPPLER S M, BROWN K M, LYNCH J P . QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theoretical and Applied Genetics, 2014,127(11):2293-2311. |
[12] | KUMAR B, ABDEL-GHANI A H, PACE J, REYES-MATAMOROS J, HOCHHOLDINGER F, LÜBBERSTEDT T . Association analysis of single nucleotide polymorphisms in candidate genes with root traits in maize (Zea mays L.) seedlings. Plant Science, 2014,224(13):9-19. |
[13] | PACE J, GARDNER C, ROMAY C, GANAPATHYSUBRAMANIAN B, LÜBBERSTEDT T . Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genomics, 2015,16(1):47. |
[14] | HOCHHOLDINGER F . The maize root system: Morphology, anatomy, and genetics//Handbook of Maize: Its Biology. New York: Springer, 2009: 145-160. |
[15] |
ZHANG F L, NIU X K, ZHANG Y M, XIE R Z, LIU X, LI S K, GAO S J . Studies on the root characteristics of maize varieties of different eras. Journal of Integrative Agriculture, 2013,12(3):426-435.
doi: 10.1016/S2095-3119(13)60243-9 |
[16] | ZAIDI P H, SEETHARAM K, KRISHNA G, KRISHNAMURTHY L, GAJANAN S, BABU R, ZERKA M, VINAYAN M T, VIVEK B S . Genomic regions associated with root traits under drought stress in tropical maize (Zea mays L.). PLoS ONE, 2016,11(10):e0164340. |
[17] |
ZHANG Z H, ZHANG X, LIN Z L, WANG J, XU M L, LAI J S, YU J M, LIN Z W . The genetic architecture of nodal root number in maize. The Plant Journal, 2018,93(6):1032-1044.
doi: 10.1111/tpj.2018.93.issue-6 |
[18] |
ALI M L, LUETCHENS J, SINGH A, SHAVER T M, KRUGER G R, LORENZ A J . Greenhouse screening of maize genotypes for deep root mass and related root traits and their association with grain yield under water-deficit conditions in the field. Euphytica, 2016,207(1):79-94.
doi: 10.1007/s10681-015-1533-x |
[19] | LANDI P, GIULIANI S, SALVI S, FERRI M, TUBEROSA R, SANGUINETI M C . Characterization of root-yield-1.06, a major constitutive QTL for root and agronomic traits in maize across water regimes. Journal of Experimental Botany, 2010,61(13):3553-3562. |
[20] |
蔡红光, 刘建超, 米国华, 袁力行, 陈晓辉, 陈范骏, 张福锁 . 田间条件下控制玉米开花前后根系性状的QTL定位. 植物营养与肥料学报, 2011,17(2):317-324.
doi: 10.11674/zwyf.2011.0179 |
CAI H G, LIU J C, MI G H, YUAN L X, CHEN X H, CHEN F J, ZHANG F S . QTL mapping for root traits around flowering stage of maize under field condition. Journal of Plant Nutrition and Fertilizer, 2011,17(2):317-324. (in Chinese)
doi: 10.11674/zwyf.2011.0179 |
|
[21] |
KU L X, SUN Z H, WANG C L, ZHANG J, ZHAO R F, LIU H Y, TAI G Q, CHEN Y H . QTL mapping and epistasis analysis of brace root traits in maize. Molecular Breeding, 2012,30(2):697-708.
doi: 10.1007/s11032-011-9655-x |
[22] |
GU D D, MEI X P, YU T T, SUN N N, XU D, LIU C X, CAI Y L . QTL identification for brace-root traits of maize in different generations and environments. Crop Science, 2017,57:13-21.
doi: 10.2135/cropsci2016.01.0031 |
[23] |
GUO J, CHEN L, LI Y X, SHI Y S, SONG Y C, ZHANG D F, LI Y, WANG T Y, YANG D G, LI C H . Meta-QTL analysis and identification of candidate genes related to root traits in maize. Euphytica, 2018,214(12):223.
doi: 10.1007/s10681-018-2283-3 |
[24] | SANCHEZ D L, LIU S S, IBRAHIM R, BLANCO M, LUBBERSTEDT T . Genome-wide association studies of doubled haploid exotic introgression lines for root system architecture traits in maize (Zea mays L.). Plant Science, 2018,268:30-38. |
[25] |
LIU X, HUANG M, FAN B, BUCKLER E S, ZHANG Z . Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genetics, 2016,12(2):e1005767.
doi: 10.1371/journal.pgen.1005767 |
[26] |
刘志斋, 吴迅, 刘海利, 李永祥, 李清超, 王凤格, 石云素, 宋燕春, 宋伟彬, 赵久然, 赖锦盛, 黎裕, 王天宇 . 基于40个核心SSR标记揭示的820份中国玉米重要自交系的遗传多样性与群体结构. 中国农业科学, 2012,45(11):2107-2138.
doi: 10.3864/j.issn.0578-1752.2012.11.001 |
LIU Z Z, WU X, LIU H L, LI Y X, LI Q C, WANG F G, SHI Y S, SONG Y C, SONG W B, ZHAO J R, LAI J S, LI Y, WANG T Y . Genetic diversity and population structure of important Chinese maize inbred lines revealed by 40 core simple sequence repeats (SSRs). Scientia Agricultura Sinica, 2012,45(11):2107-2138. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.11.001 |
|
[27] | 刘梅, 吴广俊, 路笃旭, 徐振和, 董树亭, 张吉旺, 赵斌, 李耕, 刘鹏 . 不同年代玉米品种氮素利用效率与其根系特征的关系. 植物营养与肥料学报, 2017,23(1):71-82. |
LIU M, WU K J, LU Y X, XU Z H, DONG S T, ZHANG J W, ZHAO B, LI G, LIU P . Improvement of nitrogen use efficiency and the relationship with root system characters of maize cultivars in different years. Journal of Plant Nutrition and Fertilizer, 2017,23(1):71-82. (in Chinese) | |
[28] | 修文雯, 田晓东, 陈传晓, 彭正萍, 李少昆, 张凤路 . 充足灌水条件下不同年代玉米品种根系性状比较研究. 玉米科学, 2013,21(2):78-82. |
XIU W W, TIAN X D, CHEN C X, PENG Z P, LI S K, ZHANG F L . Comparative study on the characteristics of maize root under the conditions of saturated irrigation in different eras. Journal of Maize Science, 2013,21(2):78-82. (in Chinese) | |
[29] | YORK L M, LYNCH J P . Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition. Journal of Experimental Botany, 2015,66(18):5493-505. |
[30] |
SAENGWILAI P, NORD E A, CHIMUNGU J G, BROWN K M, LYNCH J P . Root cortical aerenchyma enhances nitrogen acquisition from low-nitrogen soils in maize. Plant Physiology, 2014,166(2):726-735.
doi: 10.1104/pp.114.241711 |
[31] | 赵久然, 李春辉, 宋伟, 王元东, 张如养, 王继东, 王凤格, 田红丽, 王蕊 . 基于SNP芯片揭示中国玉米育种种质的遗传多样性与群体遗传结构. 中国农业科学, 2018,51(4):626-634. |
ZHAO J R, LI C H, SONG W, WANG Y D, ZHANG R Y, WANG J D, WANG F G, TIAN H L, WANG R . Genetic diversity and population structure of important Chinese maize breeding germplasm revealed by SNP-Chips. Scientia Agricultura Sinica, 2018,51(4):626-634. (in Chinese) | |
[32] | 贺文姝, 张海波, 孙宏蕾, 阮燕晔, 崔震海, 张立军 . 不同类群玉米自交系苞叶性状的差异分析. 华中农业大学学报, 2018,37(4):30-35. |
HE W S, ZHANG H B, SUN H L, RUAN Y Y, CUI Z H, ZHANG L J . Variation analysis of husk traits in different maize heterotic groups. Journal of Huazhong Agricultural University, 2018,37(4):30-35. (in Chinese) | |
[33] | 郭晋杰, 赵永锋, 张冬梅, 祝丽英, 黄亚群, 陈景堂 . 不同杂种优势群玉米子粒脱水速率分析. 植物遗传资源学报, 2018,19(1):39-48. |
GUO J J, ZHAO Y F, ZHANG D M, ZHU L Y, HUANG Y Q, CHEN J T . Analysis of grain dehydration rate in different maize heterotic groups. Journal of Plant Genetic Resources, 2018,19(1):39-48. (in Chinese) | |
[34] | TENAILLON M I, SAWKINS M C, LONG A D, GAUT R L, DOEBLEY J F, GAUT B S . Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proceedings of the National Academy of Sciences of the United States of America, 2001,98(16):9161-9166. |
[35] | LEACH K A, TRAN T M, SLEWINSKI T L, MEELEY R B, BRAUN D M . Sucrose transporter2 contributes to maize growth, development, and crop yield. Journal of Integrative Plant Biology, 2017,59(6):390-408. |
[1] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[2] | 胡盛,李阳阳,唐章林,李加纳,曲存民,刘列钊. 干旱胁迫下甘蓝型油菜籽粒含油量和蛋白质含量变化的全基因组关联分析[J]. 中国农业科学, 2023, 56(1): 17-30. |
[3] | 柴海燕,贾娇,白雪,孟玲敏,张伟,金嵘,吴宏斌,苏前富. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性[J]. 中国农业科学, 2023, 56(1): 64-78. |
[4] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[5] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[6] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[7] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[8] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[9] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. |
[10] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[11] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[12] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[13] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[14] | 乔远,杨欢,雒金麟,汪思娴,梁蓝月,陈新平,张务帅. 西北地区玉米生产投入及生态环境风险评价[J]. 中国农业科学, 2022, 55(5): 962-976. |
[15] | 黄兆福, 李璐璐, 侯梁宇, 高尚, 明博, 谢瑞芝, 侯鹏, 王克如, 薛军, 李少昆. 不同种植区玉米生理成熟后田间站秆脱水的积温需求[J]. 中国农业科学, 2022, 55(4): 680-691. |
|